[case testIntConstantFolding] def bin_ops() -> None: add = 15 + 47 add_mul = (2 + 3) * 5 sub = 7 - 11 div = 3 / 2 bit_and = 6 & 10 bit_or = 6 | 10 bit_xor = 6 ^ 10 lshift = 5 << 2 rshift = 13 >> 2 lshift0 = 5 << 0 rshift0 = 13 >> 0 def unary_ops() -> None: neg1 = -5 neg2 = --1 neg3 = -0 pos = +5 inverted1 = ~0 inverted2 = ~5 inverted3 = ~3 def pow() -> None: p0 = 3**0 p1 = 3**5 p2 = (-5)**3 p3 = 0**0 [out] def bin_ops(): add, add_mul, sub :: int div :: float bit_and, bit_or, bit_xor, lshift, rshift, lshift0, rshift0 :: int L0: add = 124 add_mul = 50 sub = -8 div = 1.5 bit_and = 4 bit_or = 28 bit_xor = 24 lshift = 40 rshift = 6 lshift0 = 10 rshift0 = 26 return 1 def unary_ops(): neg1, neg2, neg3, pos, inverted1, inverted2, inverted3 :: int L0: neg1 = -10 neg2 = 2 neg3 = 0 pos = 10 inverted1 = -2 inverted2 = -12 inverted3 = -8 return 1 def pow(): p0, p1, p2, p3 :: int L0: p0 = 2 p1 = 486 p2 = -250 p3 = 2 return 1 [case testIntConstantFoldingDivMod] def div() -> None: div1 = 25 // 5 div2 = 24 // 5 div3 = 29 // 5 div4 = 30 // 5 div_zero = 0 // 5 neg1 = -1 // 3 neg2 = -2 // 3 neg3 = -3 // 3 neg4 = -4 // 3 neg_neg = -765467 // -234 pos_neg = 983745 // -7864 def mod() -> None: mod1 = 25 % 5 mod2 = 24 % 5 mod3 = 29 % 5 mod4 = 30 % 5 mod_zero = 0 % 5 neg1 = -4 % 3 neg2 = -5 % 3 neg3 = -6 % 3 neg4 = -7 % 3 neg_neg = -765467 % -234 pos_neg = 983745 % -7864 [out] def div(): div1, div2, div3, div4, div_zero, neg1, neg2, neg3, neg4, neg_neg, pos_neg :: int L0: div1 = 10 div2 = 8 div3 = 10 div4 = 12 div_zero = 0 neg1 = -2 neg2 = -2 neg3 = -2 neg4 = -4 neg_neg = 6542 pos_neg = -252 return 1 def mod(): mod1, mod2, mod3, mod4, mod_zero, neg1, neg2, neg3, neg4, neg_neg, pos_neg :: int L0: mod1 = 0 mod2 = 8 mod3 = 8 mod4 = 0 mod_zero = 0 neg1 = 4 neg2 = 2 neg3 = 0 neg4 = 4 neg_neg = -106 pos_neg = -14238 return 1 [case testIntConstantFoldingUnsupportedCases] def error_cases() -> None: div_by_zero = 5 / 0 floor_div_by_zero = 5 // 0 mod_by_zero = 5 % 0 lshift_neg = 6 << -1 rshift_neg = 7 >> -1 def unsupported_pow() -> None: p = 3 ** (-1) [out] def error_cases(): r0, div_by_zero :: float r1, floor_div_by_zero, r2, mod_by_zero, r3, lshift_neg, r4, rshift_neg :: int L0: r0 = CPyTagged_TrueDivide(10, 0) div_by_zero = r0 r1 = CPyTagged_FloorDivide(10, 0) floor_div_by_zero = r1 r2 = CPyTagged_Remainder(10, 0) mod_by_zero = r2 r3 = CPyTagged_Lshift(12, -2) lshift_neg = r3 r4 = CPyTagged_Rshift(14, -2) rshift_neg = r4 return 1 def unsupported_pow(): r0, r1, r2 :: object r3, p :: float L0: r0 = object 3 r1 = object -1 r2 = CPyNumber_Power(r0, r1) r3 = unbox(float, r2) p = r3 return 1 [case testIntConstantFoldingBigIntResult_64bit] def long_and_short() -> None: # The smallest and largest representable short integers short1 = 0x3ffffffffffffff0 + 0xf # (1 << 62) - 1 short2 = -0x3fffffffffffffff - 1 # -(1 << 62) short3 = -0x4000000000000000 # Smallest big integers by absolute value big1 = 1 << 62 big2 = 0x4000000000000000 # 1 << 62 big3 = -(1 << 62) - 1 big4 = -0x4000000000000001 # -(1 << 62) - 1 big5 = 123**41 [out] def long_and_short(): short1, short2, short3, r0, big1, r1, big2, r2, big3, r3, big4, r4, big5 :: int L0: short1 = 9223372036854775806 short2 = -9223372036854775808 short3 = -9223372036854775808 r0 = object 4611686018427387904 big1 = r0 r1 = object 4611686018427387904 big2 = r1 r2 = object -4611686018427387905 big3 = r2 r3 = object -4611686018427387905 big4 = r3 r4 = object 48541095000524544750127162673405880068636916264012200797813591925035550682238127143323 big5 = r4 return 1 [case testIntConstantFoldingFinal] from typing_extensions import Final X: Final = 5 Y: Final = 2 + 4 def f() -> None: a = X + 1 a = Y + 1 [out] def f(): a :: int L0: a = 12 a = 14 return 1 [case testIntConstantFoldingClassFinal] from typing_extensions import Final class C: X: Final = 5 def f() -> None: a = C.X + 1 [out] def C.__mypyc_defaults_setup(__mypyc_self__): __mypyc_self__ :: __main__.C L0: __mypyc_self__.X = 10 return 1 def f(): a :: int L0: a = 12 return 1 [case testFloatConstantFolding] from typing_extensions import Final N: Final = 1.5 N2: Final = 1.5 * 2 def bin_ops() -> None: add = 0.5 + 0.5 add_mul = (1.5 + 3.5) * 5.0 sub = 7.0 - 7.5 div = 3.0 / 2.0 floor_div = 3.0 // 2.0 def bin_ops_neg() -> None: add = 0.5 + -0.5 add_mul = (-1.5 + 3.5) * -5.0 add_mul2 = (1.5 + -3.5) * -5.0 sub = 7.0 - -7.5 div = 3.0 / -2.0 floor_div = 3.0 // -2.0 def unary_ops() -> None: neg1 = -5.5 neg2 = --1.5 neg3 = -0.0 pos = +5.5 def pow() -> None: p0 = 16.0**0 p1 = 16.0**0.5 p2 = (-5.0)**3 p3 = 16.0**(-0) p4 = 16.0**(-0.5) p5 = (-2.0)**(-1) def error_cases() -> None: div = 2.0 / 0.0 floor_div = 2.0 // 0.0 power_imag = (-2.0)**0.5 power_imag2 = (-2.0)**(-0.5) power_overflow = 2.0**10000.0 def final_floats() -> None: add1 = N + 1.2 add2 = N + N2 add3 = -1.2 + N2 [out] def bin_ops(): add, add_mul, sub, div, floor_div :: float L0: add = 1.0 add_mul = 25.0 sub = -0.5 div = 1.5 floor_div = 1.0 return 1 def bin_ops_neg(): add, add_mul, add_mul2, sub, div, floor_div :: float L0: add = 0.0 add_mul = -10.0 add_mul2 = 10.0 sub = 14.5 div = -1.5 floor_div = -2.0 return 1 def unary_ops(): neg1, neg2, neg3, pos :: float L0: neg1 = -5.5 neg2 = 1.5 neg3 = -0.0 pos = 5.5 return 1 def pow(): p0, p1, p2, p3, p4, p5 :: float L0: p0 = 1.0 p1 = 4.0 p2 = -125.0 p3 = 1.0 p4 = 0.25 p5 = -0.5 return 1 def error_cases(): r0 :: bit r1 :: bool r2, div, r3, floor_div :: float r4, r5, r6 :: object r7, power_imag :: float r8, r9, r10 :: object r11, power_imag2 :: float r12, r13, r14 :: object r15, power_overflow :: float L0: r0 = 0.0 == 0.0 if r0 goto L1 else goto L2 :: bool L1: r1 = raise ZeroDivisionError('float division by zero') unreachable L2: r2 = 2.0 / 0.0 div = r2 r3 = CPyFloat_FloorDivide(2.0, 0.0) floor_div = r3 r4 = box(float, -2.0) r5 = box(float, 0.5) r6 = CPyNumber_Power(r4, r5) r7 = unbox(float, r6) power_imag = r7 r8 = box(float, -2.0) r9 = box(float, -0.5) r10 = CPyNumber_Power(r8, r9) r11 = unbox(float, r10) power_imag2 = r11 r12 = box(float, 2.0) r13 = box(float, 10000.0) r14 = CPyNumber_Power(r12, r13) r15 = unbox(float, r14) power_overflow = r15 return 1 def final_floats(): add1, add2, add3 :: float L0: add1 = 2.7 add2 = 4.5 add3 = 1.8 return 1 [case testMixedFloatIntConstantFolding] def bin_ops() -> None: add = 1 + 0.5 sub = 1 - 0.5 mul = 0.5 * 5 div = 5 / 0.5 floor_div = 9.5 // 5 def error_cases() -> None: div = 2.0 / 0 floor_div = 2.0 // 0 power_overflow = 2.0**10000 [out] def bin_ops(): add, sub, mul, div, floor_div :: float L0: add = 1.5 sub = 0.5 mul = 2.5 div = 10.0 floor_div = 1.0 return 1 def error_cases(): r0 :: bit r1 :: bool r2, div, r3, floor_div :: float r4, r5, r6 :: object r7, power_overflow :: float L0: r0 = 0.0 == 0.0 if r0 goto L1 else goto L2 :: bool L1: r1 = raise ZeroDivisionError('float division by zero') unreachable L2: r2 = 2.0 / 0.0 div = r2 r3 = CPyFloat_FloorDivide(2.0, 0.0) floor_div = r3 r4 = box(float, 2.0) r5 = box(float, 10000.0) r6 = CPyNumber_Power(r4, r5) r7 = unbox(float, r6) power_overflow = r7 return 1 [case testStrConstantFolding] from typing_extensions import Final S: Final = 'z' N: Final = 2 def f() -> None: x = 'foo' + 'bar' y = 'x' + 'y' + S mul = "foobar" * 2 mul2 = N * "foobar" [out] def f(): r0, x, r1, y, r2, mul, r3, mul2 :: str L0: r0 = 'foobar' x = r0 r1 = 'xyz' y = r1 r2 = 'foobarfoobar' mul = r2 r3 = 'foobarfoobar' mul2 = r3 return 1 [case testBytesConstantFolding] from typing_extensions import Final N: Final = 2 def f() -> None: # Unfortunately, mypy doesn't store the bytes value of final refs. x = b'foo' + b'bar' mul = b"foobar" * 2 mul2 = N * b"foobar" [out] def f(): r0, x, r1, mul, r2, mul2 :: bytes L0: r0 = b'foobar' x = r0 r1 = b'foobarfoobar' mul = r1 r2 = b'foobarfoobar' mul2 = r2 return 1 [case testComplexConstantFolding] from typing_extensions import Final N: Final = 1 FLOAT_N: Final = 1.5 def integral() -> None: pos = 1+2j pos_2 = 2j+N neg = 1-2j neg_2 = 2j-N def floating() -> None: pos = 1.5+2j pos_2 = 2j+FLOAT_N neg = 1.5-2j neg_2 = 2j-FLOAT_N [out] def integral(): r0, pos, r1, pos_2, r2, neg, r3, neg_2 :: object L0: r0 = (1+2j) pos = r0 r1 = (1+2j) pos_2 = r1 r2 = (1-2j) neg = r2 r3 = (-1+2j) neg_2 = r3 return 1 def floating(): r0, pos, r1, pos_2, r2, neg, r3, neg_2 :: object L0: r0 = (1.5+2j) pos = r0 r1 = (1.5+2j) pos_2 = r1 r2 = (1.5-2j) neg = r2 r3 = (-1.5+2j) neg_2 = r3 return 1