from __future__ import annotations from collections import defaultdict from contextlib import contextmanager from typing import DefaultDict, Iterator, List, Optional, Tuple, Union, cast from typing_extensions import TypeAlias as _TypeAlias from mypy.erasetype import remove_instance_last_known_values from mypy.join import join_simple from mypy.literals import Key, literal, literal_hash, subkeys from mypy.nodes import Expression, IndexExpr, MemberExpr, NameExpr, RefExpr, TypeInfo, Var from mypy.subtypes import is_same_type, is_subtype from mypy.types import ( AnyType, NoneType, PartialType, Type, TypeOfAny, TypeType, UnionType, get_proper_type, ) from mypy.typevars import fill_typevars_with_any BindableExpression: _TypeAlias = Union[IndexExpr, MemberExpr, NameExpr] class Frame: """A Frame represents a specific point in the execution of a program. It carries information about the current types of expressions at that point, arising either from assignments to those expressions or the result of isinstance checks. It also records whether it is possible to reach that point at all. This information is not copied into a new Frame when it is pushed onto the stack, so a given Frame only has information about types that were assigned in that frame. """ def __init__(self, id: int, conditional_frame: bool = False) -> None: self.id = id self.types: dict[Key, Type] = {} self.unreachable = False self.conditional_frame = conditional_frame self.suppress_unreachable_warnings = False def __repr__(self) -> str: return f"Frame({self.id}, {self.types}, {self.unreachable}, {self.conditional_frame})" Assigns = DefaultDict[Expression, List[Tuple[Type, Optional[Type]]]] class ConditionalTypeBinder: """Keep track of conditional types of variables. NB: Variables are tracked by literal expression, so it is possible to confuse the binder; for example, ``` class A: a: Union[int, str] = None x = A() lst = [x] reveal_type(x.a) # Union[int, str] x.a = 1 reveal_type(x.a) # int reveal_type(lst[0].a) # Union[int, str] lst[0].a = 'a' reveal_type(x.a) # int reveal_type(lst[0].a) # str ``` """ # Stored assignments for situations with tuple/list lvalue and rvalue of union type. # This maps an expression to a list of bound types for every item in the union type. type_assignments: Assigns | None = None def __init__(self) -> None: self.next_id = 1 # The stack of frames currently used. These map # literal_hash(expr) -- literals like 'foo.bar' -- # to types. The last element of this list is the # top-most, current frame. Each earlier element # records the state as of when that frame was last # on top of the stack. self.frames = [Frame(self._get_id())] # For frames higher in the stack, we record the set of # Frames that can escape there, either by falling off # the end of the frame or by a loop control construct # or raised exception. The last element of self.frames # has no corresponding element in this list. self.options_on_return: list[list[Frame]] = [] # Maps literal_hash(expr) to get_declaration(expr) # for every expr stored in the binder self.declarations: dict[Key, Type | None] = {} # Set of other keys to invalidate if a key is changed, e.g. x -> {x.a, x[0]} # Whenever a new key (e.g. x.a.b) is added, we update this self.dependencies: dict[Key, set[Key]] = {} # Whether the last pop changed the newly top frame on exit self.last_pop_changed = False self.try_frames: set[int] = set() self.break_frames: list[int] = [] self.continue_frames: list[int] = [] def _get_id(self) -> int: self.next_id += 1 return self.next_id def _add_dependencies(self, key: Key, value: Key | None = None) -> None: if value is None: value = key else: self.dependencies.setdefault(key, set()).add(value) for elt in subkeys(key): self._add_dependencies(elt, value) def push_frame(self, conditional_frame: bool = False) -> Frame: """Push a new frame into the binder.""" f = Frame(self._get_id(), conditional_frame) self.frames.append(f) self.options_on_return.append([]) return f def _put(self, key: Key, type: Type, index: int = -1) -> None: self.frames[index].types[key] = type def _get(self, key: Key, index: int = -1) -> Type | None: if index < 0: index += len(self.frames) for i in range(index, -1, -1): if key in self.frames[i].types: return self.frames[i].types[key] return None def put(self, expr: Expression, typ: Type) -> None: if not isinstance(expr, (IndexExpr, MemberExpr, NameExpr)): return if not literal(expr): return key = literal_hash(expr) assert key is not None, "Internal error: binder tried to put non-literal" if key not in self.declarations: self.declarations[key] = get_declaration(expr) self._add_dependencies(key) self._put(key, typ) def unreachable(self) -> None: self.frames[-1].unreachable = True def suppress_unreachable_warnings(self) -> None: self.frames[-1].suppress_unreachable_warnings = True def get(self, expr: Expression) -> Type | None: key = literal_hash(expr) assert key is not None, "Internal error: binder tried to get non-literal" return self._get(key) def is_unreachable(self) -> bool: # TODO: Copy the value of unreachable into new frames to avoid # this traversal on every statement? return any(f.unreachable for f in self.frames) def is_unreachable_warning_suppressed(self) -> bool: return any(f.suppress_unreachable_warnings for f in self.frames) def cleanse(self, expr: Expression) -> None: """Remove all references to a Node from the binder.""" key = literal_hash(expr) assert key is not None, "Internal error: binder tried cleanse non-literal" self._cleanse_key(key) def _cleanse_key(self, key: Key) -> None: """Remove all references to a key from the binder.""" for frame in self.frames: if key in frame.types: del frame.types[key] def update_from_options(self, frames: list[Frame]) -> bool: """Update the frame to reflect that each key will be updated as in one of the frames. Return whether any item changes. If a key is declared as AnyType, only update it if all the options are the same. """ frames = [f for f in frames if not f.unreachable] changed = False keys = {key for f in frames for key in f.types} for key in keys: current_value = self._get(key) resulting_values = [f.types.get(key, current_value) for f in frames] if any(x is None for x in resulting_values): # We didn't know anything about key before # (current_value must be None), and we still don't # know anything about key in at least one possible frame. continue type = resulting_values[0] assert type is not None declaration_type = get_proper_type(self.declarations.get(key)) if isinstance(declaration_type, AnyType): # At this point resulting values can't contain None, see continue above if not all(is_same_type(type, cast(Type, t)) for t in resulting_values[1:]): type = AnyType(TypeOfAny.from_another_any, source_any=declaration_type) else: for other in resulting_values[1:]: assert other is not None type = join_simple(self.declarations[key], type, other) if current_value is None or not is_same_type(type, current_value): self._put(key, type) changed = True self.frames[-1].unreachable = not frames return changed def pop_frame(self, can_skip: bool, fall_through: int) -> Frame: """Pop a frame and return it. See frame_context() for documentation of fall_through. """ if fall_through > 0: self.allow_jump(-fall_through) result = self.frames.pop() options = self.options_on_return.pop() if can_skip: options.insert(0, self.frames[-1]) self.last_pop_changed = self.update_from_options(options) return result @contextmanager def accumulate_type_assignments(self) -> Iterator[Assigns]: """Push a new map to collect assigned types in multiassign from union. If this map is not None, actual binding is deferred until all items in the union are processed (a union of collected items is later bound manually by the caller). """ old_assignments = None if self.type_assignments is not None: old_assignments = self.type_assignments self.type_assignments = defaultdict(list) yield self.type_assignments self.type_assignments = old_assignments def assign_type( self, expr: Expression, type: Type, declared_type: Type | None, restrict_any: bool = False ) -> None: # We should erase last known value in binder, because if we are using it, # it means that the target is not final, and therefore can't hold a literal. type = remove_instance_last_known_values(type) if self.type_assignments is not None: # We are in a multiassign from union, defer the actual binding, # just collect the types. self.type_assignments[expr].append((type, declared_type)) return if not isinstance(expr, (IndexExpr, MemberExpr, NameExpr)): return None if not literal(expr): return self.invalidate_dependencies(expr) if declared_type is None: # Not sure why this happens. It seems to mainly happen in # member initialization. return if not is_subtype(type, declared_type): # Pretty sure this is only happens when there's a type error. # Ideally this function wouldn't be called if the # expression has a type error, though -- do other kinds of # errors cause this function to get called at invalid # times? return p_declared = get_proper_type(declared_type) p_type = get_proper_type(type) enclosing_type = get_proper_type(self.most_recent_enclosing_type(expr, type)) if isinstance(enclosing_type, AnyType) and not restrict_any: # If x is Any and y is int, after x = y we do not infer that x is int. # This could be changed. # Instead, since we narrowed type from Any in a recent frame (probably an # isinstance check), but now it is reassigned, we broaden back # to Any (which is the most recent enclosing type) self.put(expr, enclosing_type) # As a special case, when assigning Any to a variable with a # declared Optional type that has been narrowed to None, # replace all the Nones in the declared Union type with Any. # This overrides the normal behavior of ignoring Any assignments to variables # in order to prevent false positives. # (See discussion in #3526) elif ( isinstance(p_type, AnyType) and isinstance(p_declared, UnionType) and any(isinstance(get_proper_type(item), NoneType) for item in p_declared.items) and isinstance( get_proper_type(self.most_recent_enclosing_type(expr, NoneType())), NoneType ) ): # Replace any Nones in the union type with Any new_items = [ type if isinstance(get_proper_type(item), NoneType) else item for item in p_declared.items ] self.put(expr, UnionType(new_items)) elif isinstance(p_type, AnyType) and not ( isinstance(p_declared, UnionType) and any(isinstance(get_proper_type(item), AnyType) for item in p_declared.items) ): # Assigning an Any value doesn't affect the type to avoid false negatives, unless # there is an Any item in a declared union type. self.put(expr, declared_type) else: self.put(expr, type) for i in self.try_frames: # XXX This should probably not copy the entire frame, but # just copy this variable into a single stored frame. self.allow_jump(i) def invalidate_dependencies(self, expr: BindableExpression) -> None: """Invalidate knowledge of types that include expr, but not expr itself. For example, when expr is foo.bar, invalidate foo.bar.baz. It is overly conservative: it invalidates globally, including in code paths unreachable from here. """ key = literal_hash(expr) assert key is not None for dep in self.dependencies.get(key, set()): self._cleanse_key(dep) def most_recent_enclosing_type(self, expr: BindableExpression, type: Type) -> Type | None: type = get_proper_type(type) if isinstance(type, AnyType): return get_declaration(expr) key = literal_hash(expr) assert key is not None enclosers = [get_declaration(expr)] + [ f.types[key] for f in self.frames if key in f.types and is_subtype(type, f.types[key]) ] return enclosers[-1] def allow_jump(self, index: int) -> None: # self.frames and self.options_on_return have different lengths # so make sure the index is positive if index < 0: index += len(self.options_on_return) frame = Frame(self._get_id()) for f in self.frames[index + 1 :]: frame.types.update(f.types) if f.unreachable: frame.unreachable = True self.options_on_return[index].append(frame) def handle_break(self) -> None: self.allow_jump(self.break_frames[-1]) self.unreachable() def handle_continue(self) -> None: self.allow_jump(self.continue_frames[-1]) self.unreachable() @contextmanager def frame_context( self, *, can_skip: bool, fall_through: int = 1, break_frame: int = 0, continue_frame: int = 0, conditional_frame: bool = False, try_frame: bool = False, ) -> Iterator[Frame]: """Return a context manager that pushes/pops frames on enter/exit. If can_skip is True, control flow is allowed to bypass the newly-created frame. If fall_through > 0, then it will allow control flow that falls off the end of the frame to escape to its ancestor `fall_through` levels higher. Otherwise control flow ends at the end of the frame. If break_frame > 0, then 'break' statements within this frame will jump out to the frame break_frame levels higher than the frame created by this call to frame_context. Similarly for continue_frame and 'continue' statements. If try_frame is true, then execution is allowed to jump at any point within the newly created frame (or its descendants) to its parent (i.e., to the frame that was on top before this call to frame_context). After the context manager exits, self.last_pop_changed indicates whether any types changed in the newly-topmost frame as a result of popping this frame. """ assert len(self.frames) > 1 if break_frame: self.break_frames.append(len(self.frames) - break_frame) if continue_frame: self.continue_frames.append(len(self.frames) - continue_frame) if try_frame: self.try_frames.add(len(self.frames) - 1) new_frame = self.push_frame(conditional_frame) if try_frame: # An exception may occur immediately self.allow_jump(-1) yield new_frame self.pop_frame(can_skip, fall_through) if break_frame: self.break_frames.pop() if continue_frame: self.continue_frames.pop() if try_frame: self.try_frames.remove(len(self.frames) - 1) @contextmanager def top_frame_context(self) -> Iterator[Frame]: """A variant of frame_context for use at the top level of a namespace (module, function, or class). """ assert len(self.frames) == 1 yield self.push_frame() self.pop_frame(True, 0) assert len(self.frames) == 1 def get_declaration(expr: BindableExpression) -> Type | None: if isinstance(expr, RefExpr): if isinstance(expr.node, Var): type = expr.node.type if not isinstance(get_proper_type(type), PartialType): return type elif isinstance(expr.node, TypeInfo): return TypeType(fill_typevars_with_any(expr.node)) return None