"""Merge a new version of a module AST and symbol table to older versions of those. When the source code of a module has a change in fine-grained incremental mode, we build a new AST from the updated source. However, other parts of the program may have direct references to parts of the old AST (namely, those nodes exposed in the module symbol table). The merge operation changes the identities of new AST nodes that have a correspondence in the old AST to the old ones so that existing cross-references in other modules will continue to point to the correct nodes. Also internal cross-references within the new AST are replaced. AST nodes that aren't externally visible will get new, distinct object identities. This applies to most expression and statement nodes, for example. We perform this merge operation so that we don't have to update all external references (which would be slow and fragile) or always perform translation when looking up references (which would be hard to retrofit). The AST merge operation is performed after semantic analysis. Semantic analysis has to deal with potentially multiple aliases to certain AST nodes (in particular, MypyFile nodes). Type checking assumes that we don't have multiple variants of a single AST node visible to the type checker. Discussion of some notable special cases: * If a node is replaced with a different kind of node (say, a function is replaced with a class), we don't perform the merge. Fine-grained dependencies will be used to rebind all references to the node. * If a function is replaced with another function with an identical signature, call sites continue to point to the same object (by identity) and don't need to be reprocessed. Similarly, if a class is replaced with a class that is sufficiently similar (MRO preserved, etc.), class references don't need any processing. A typical incremental update to a file only changes a few externally visible things in a module, and this means that often only few external references need any processing, even if the modified module is large. * A no-op update of a module should not require any processing outside the module, since all relevant object identities are preserved. * The AST diff operation (mypy.server.astdiff) and the top-level fine-grained incremental logic (mypy.server.update) handle the cases where the new AST has differences from the old one that may need to be propagated to elsewhere in the program. See the main entry point merge_asts for more details. """ from __future__ import annotations from typing import TypeVar, cast from mypy.nodes import ( MDEF, AssertTypeExpr, AssignmentStmt, Block, CallExpr, CastExpr, ClassDef, EnumCallExpr, FuncBase, FuncDef, LambdaExpr, MemberExpr, MypyFile, NamedTupleExpr, NameExpr, NewTypeExpr, OverloadedFuncDef, RefExpr, Statement, SuperExpr, SymbolNode, SymbolTable, TypeAlias, TypedDictExpr, TypeInfo, Var, ) from mypy.traverser import TraverserVisitor from mypy.types import ( AnyType, CallableArgument, CallableType, DeletedType, EllipsisType, ErasedType, Instance, LiteralType, NoneType, Overloaded, Parameters, ParamSpecType, PartialType, PlaceholderType, RawExpressionType, SyntheticTypeVisitor, TupleType, Type, TypeAliasType, TypedDictType, TypeList, TypeType, TypeVarTupleType, TypeVarType, UnboundType, UninhabitedType, UnionType, UnpackType, ) from mypy.typestate import type_state from mypy.util import get_prefix, replace_object_state def merge_asts( old: MypyFile, old_symbols: SymbolTable, new: MypyFile, new_symbols: SymbolTable ) -> None: """Merge a new version of a module AST to a previous version. The main idea is to preserve the identities of externally visible nodes in the old AST (that have a corresponding node in the new AST). All old node state (outside identity) will come from the new AST. When this returns, 'old' will refer to the merged AST, but 'new_symbols' will be the new symbol table. 'new' and 'old_symbols' will no longer be valid. """ assert new.fullname == old.fullname # Find the mapping from new to old node identities for all nodes # whose identities should be preserved. replacement_map = replacement_map_from_symbol_table( old_symbols, new_symbols, prefix=old.fullname ) # Also replace references to the new MypyFile node. replacement_map[new] = old # Perform replacements to everywhere within the new AST (not including symbol # tables). node = replace_nodes_in_ast(new, replacement_map) assert node is old # Also replace AST node references in the *new* symbol table (we'll # continue to use the new symbol table since it has all the new definitions # that have no correspondence in the old AST). replace_nodes_in_symbol_table(new_symbols, replacement_map) def replacement_map_from_symbol_table( old: SymbolTable, new: SymbolTable, prefix: str ) -> dict[SymbolNode, SymbolNode]: """Create a new-to-old object identity map by comparing two symbol table revisions. Both symbol tables must refer to revisions of the same module id. The symbol tables are compared recursively (recursing into nested class symbol tables), but only within the given module prefix. Don't recurse into other modules accessible through the symbol table. """ replacements: dict[SymbolNode, SymbolNode] = {} for name, node in old.items(): if name in new and ( node.kind == MDEF or node.node and get_prefix(node.node.fullname) == prefix ): new_node = new[name] if ( type(new_node.node) == type(node.node) # noqa: E721 and new_node.node and node.node and new_node.node.fullname == node.node.fullname and new_node.kind == node.kind ): replacements[new_node.node] = node.node if isinstance(node.node, TypeInfo) and isinstance(new_node.node, TypeInfo): type_repl = replacement_map_from_symbol_table( node.node.names, new_node.node.names, prefix ) replacements.update(type_repl) if node.node.special_alias and new_node.node.special_alias: replacements[new_node.node.special_alias] = node.node.special_alias return replacements def replace_nodes_in_ast( node: SymbolNode, replacements: dict[SymbolNode, SymbolNode] ) -> SymbolNode: """Replace all references to replacement map keys within an AST node, recursively. Also replace the *identity* of any nodes that have replacements. Return the *replaced* version of the argument node (which may have a different identity, if it's included in the replacement map). """ visitor = NodeReplaceVisitor(replacements) node.accept(visitor) return replacements.get(node, node) SN = TypeVar("SN", bound=SymbolNode) class NodeReplaceVisitor(TraverserVisitor): """Transform some nodes to new identities in an AST. Only nodes that live in the symbol table may be replaced, which simplifies the implementation some. Also replace all references to the old identities. """ def __init__(self, replacements: dict[SymbolNode, SymbolNode]) -> None: self.replacements = replacements def visit_mypy_file(self, node: MypyFile) -> None: node = self.fixup(node) node.defs = self.replace_statements(node.defs) super().visit_mypy_file(node) def visit_block(self, node: Block) -> None: node.body = self.replace_statements(node.body) super().visit_block(node) def visit_func_def(self, node: FuncDef) -> None: node = self.fixup(node) self.process_base_func(node) super().visit_func_def(node) def visit_overloaded_func_def(self, node: OverloadedFuncDef) -> None: self.process_base_func(node) super().visit_overloaded_func_def(node) def visit_class_def(self, node: ClassDef) -> None: # TODO additional things? node.info = self.fixup_and_reset_typeinfo(node.info) node.defs.body = self.replace_statements(node.defs.body) info = node.info for tv in node.type_vars: if isinstance(tv, TypeVarType): self.process_type_var_def(tv) if info: if info.is_named_tuple: self.process_synthetic_type_info(info) else: self.process_type_info(info) super().visit_class_def(node) def process_base_func(self, node: FuncBase) -> None: self.fixup_type(node.type) node.info = self.fixup(node.info) if node.unanalyzed_type: # Unanalyzed types can have AST node references self.fixup_type(node.unanalyzed_type) def process_type_var_def(self, tv: TypeVarType) -> None: for value in tv.values: self.fixup_type(value) self.fixup_type(tv.upper_bound) self.fixup_type(tv.default) def process_param_spec_def(self, tv: ParamSpecType) -> None: self.fixup_type(tv.upper_bound) self.fixup_type(tv.default) def process_type_var_tuple_def(self, tv: TypeVarTupleType) -> None: self.fixup_type(tv.upper_bound) self.fixup_type(tv.default) def visit_assignment_stmt(self, node: AssignmentStmt) -> None: self.fixup_type(node.type) super().visit_assignment_stmt(node) # Expressions def visit_name_expr(self, node: NameExpr) -> None: self.visit_ref_expr(node) def visit_member_expr(self, node: MemberExpr) -> None: if node.def_var: node.def_var = self.fixup(node.def_var) self.visit_ref_expr(node) super().visit_member_expr(node) def visit_ref_expr(self, node: RefExpr) -> None: if node.node is not None: node.node = self.fixup(node.node) if isinstance(node.node, Var): # The Var node may be an orphan and won't otherwise be processed. node.node.accept(self) def visit_namedtuple_expr(self, node: NamedTupleExpr) -> None: super().visit_namedtuple_expr(node) node.info = self.fixup_and_reset_typeinfo(node.info) self.process_synthetic_type_info(node.info) def visit_cast_expr(self, node: CastExpr) -> None: super().visit_cast_expr(node) self.fixup_type(node.type) def visit_assert_type_expr(self, node: AssertTypeExpr) -> None: super().visit_assert_type_expr(node) self.fixup_type(node.type) def visit_super_expr(self, node: SuperExpr) -> None: super().visit_super_expr(node) if node.info is not None: node.info = self.fixup(node.info) def visit_call_expr(self, node: CallExpr) -> None: super().visit_call_expr(node) if isinstance(node.analyzed, SymbolNode): node.analyzed = self.fixup(node.analyzed) def visit_newtype_expr(self, node: NewTypeExpr) -> None: if node.info: node.info = self.fixup_and_reset_typeinfo(node.info) self.process_synthetic_type_info(node.info) self.fixup_type(node.old_type) super().visit_newtype_expr(node) def visit_lambda_expr(self, node: LambdaExpr) -> None: node.info = self.fixup(node.info) super().visit_lambda_expr(node) def visit_typeddict_expr(self, node: TypedDictExpr) -> None: super().visit_typeddict_expr(node) node.info = self.fixup_and_reset_typeinfo(node.info) self.process_synthetic_type_info(node.info) def visit_enum_call_expr(self, node: EnumCallExpr) -> None: node.info = self.fixup_and_reset_typeinfo(node.info) self.process_synthetic_type_info(node.info) super().visit_enum_call_expr(node) # Others def visit_var(self, node: Var) -> None: node.info = self.fixup(node.info) self.fixup_type(node.type) super().visit_var(node) def visit_type_alias(self, node: TypeAlias) -> None: self.fixup_type(node.target) for v in node.alias_tvars: self.fixup_type(v) super().visit_type_alias(node) # Helpers def fixup(self, node: SN) -> SN: if node in self.replacements: new = self.replacements[node] skip_slots: tuple[str, ...] = () if isinstance(node, TypeInfo) and isinstance(new, TypeInfo): # Special case: special_alias is not exposed in symbol tables, but may appear # in external types (e.g. named tuples), so we need to update it manually. skip_slots = ("special_alias",) replace_object_state(new.special_alias, node.special_alias) replace_object_state(new, node, skip_slots=skip_slots) return cast(SN, new) return node def fixup_and_reset_typeinfo(self, node: TypeInfo) -> TypeInfo: """Fix-up type info and reset subtype caches. This needs to be called at least once per each merged TypeInfo, as otherwise we may leak stale caches. """ if node in self.replacements: # The subclass relationships may change, so reset all caches relevant to the # old MRO. new = self.replacements[node] assert isinstance(new, TypeInfo) type_state.reset_all_subtype_caches_for(new) return self.fixup(node) def fixup_type(self, typ: Type | None) -> None: if typ is not None: typ.accept(TypeReplaceVisitor(self.replacements)) def process_type_info(self, info: TypeInfo | None) -> None: if info is None: return self.fixup_type(info.declared_metaclass) self.fixup_type(info.metaclass_type) for target in info._promote: self.fixup_type(target) self.fixup_type(info.tuple_type) self.fixup_type(info.typeddict_type) if info.special_alias: self.fixup_type(info.special_alias.target) info.defn.info = self.fixup(info) replace_nodes_in_symbol_table(info.names, self.replacements) for i, item in enumerate(info.mro): info.mro[i] = self.fixup(info.mro[i]) for i, base in enumerate(info.bases): self.fixup_type(info.bases[i]) def process_synthetic_type_info(self, info: TypeInfo) -> None: # Synthetic types (types not created using a class statement) don't # have bodies in the AST so we need to iterate over their symbol # tables separately, unlike normal classes. self.process_type_info(info) for name, node in info.names.items(): if node.node: node.node.accept(self) def replace_statements(self, nodes: list[Statement]) -> list[Statement]: result = [] for node in nodes: if isinstance(node, SymbolNode): node = self.fixup(node) result.append(node) return result class TypeReplaceVisitor(SyntheticTypeVisitor[None]): """Similar to NodeReplaceVisitor, but for type objects. Note: this visitor may sometimes visit unanalyzed types such as 'UnboundType' and 'RawExpressionType' For example, see NodeReplaceVisitor.process_base_func. """ def __init__(self, replacements: dict[SymbolNode, SymbolNode]) -> None: self.replacements = replacements def visit_instance(self, typ: Instance) -> None: typ.type = self.fixup(typ.type) for arg in typ.args: arg.accept(self) if typ.last_known_value: typ.last_known_value.accept(self) def visit_type_alias_type(self, typ: TypeAliasType) -> None: assert typ.alias is not None typ.alias = self.fixup(typ.alias) for arg in typ.args: arg.accept(self) def visit_any(self, typ: AnyType) -> None: pass def visit_none_type(self, typ: NoneType) -> None: pass def visit_callable_type(self, typ: CallableType) -> None: for arg in typ.arg_types: arg.accept(self) typ.ret_type.accept(self) if typ.definition: # No need to fixup since this is just a cross-reference. typ.definition = self.replacements.get(typ.definition, typ.definition) # Fallback can be None for callable types that haven't been semantically analyzed. if typ.fallback is not None: typ.fallback.accept(self) for tv in typ.variables: if isinstance(tv, TypeVarType): tv.upper_bound.accept(self) for value in tv.values: value.accept(self) def visit_overloaded(self, t: Overloaded) -> None: for item in t.items: item.accept(self) # Fallback can be None for overloaded types that haven't been semantically analyzed. if t.fallback is not None: t.fallback.accept(self) def visit_erased_type(self, t: ErasedType) -> None: # This type should exist only temporarily during type inference raise RuntimeError("Cannot handle erased type") def visit_deleted_type(self, typ: DeletedType) -> None: pass def visit_partial_type(self, typ: PartialType) -> None: raise RuntimeError("Cannot handle partial type") def visit_tuple_type(self, typ: TupleType) -> None: for item in typ.items: item.accept(self) # Fallback can be None for implicit tuple types that haven't been semantically analyzed. if typ.partial_fallback is not None: typ.partial_fallback.accept(self) def visit_type_type(self, typ: TypeType) -> None: typ.item.accept(self) def visit_type_var(self, typ: TypeVarType) -> None: typ.upper_bound.accept(self) typ.default.accept(self) for value in typ.values: value.accept(self) def visit_param_spec(self, typ: ParamSpecType) -> None: typ.upper_bound.accept(self) typ.default.accept(self) def visit_type_var_tuple(self, typ: TypeVarTupleType) -> None: typ.upper_bound.accept(self) typ.default.accept(self) def visit_unpack_type(self, typ: UnpackType) -> None: typ.type.accept(self) def visit_parameters(self, typ: Parameters) -> None: for arg in typ.arg_types: arg.accept(self) def visit_typeddict_type(self, typ: TypedDictType) -> None: for value_type in typ.items.values(): value_type.accept(self) typ.fallback.accept(self) def visit_raw_expression_type(self, t: RawExpressionType) -> None: pass def visit_literal_type(self, typ: LiteralType) -> None: typ.fallback.accept(self) def visit_unbound_type(self, typ: UnboundType) -> None: for arg in typ.args: arg.accept(self) def visit_type_list(self, typ: TypeList) -> None: for item in typ.items: item.accept(self) def visit_callable_argument(self, typ: CallableArgument) -> None: typ.typ.accept(self) def visit_ellipsis_type(self, typ: EllipsisType) -> None: pass def visit_uninhabited_type(self, typ: UninhabitedType) -> None: pass def visit_union_type(self, typ: UnionType) -> None: for item in typ.items: item.accept(self) def visit_placeholder_type(self, t: PlaceholderType) -> None: for item in t.args: item.accept(self) # Helpers def fixup(self, node: SN) -> SN: if node in self.replacements: new = self.replacements[node] return cast(SN, new) return node def replace_nodes_in_symbol_table( symbols: SymbolTable, replacements: dict[SymbolNode, SymbolNode] ) -> None: for name, node in symbols.items(): if node.node: if node.node in replacements: new = replacements[node.node] old = node.node # Needed for TypeInfo, see comment in fixup() above. replace_object_state(new, old, skip_slots=("special_alias",)) node.node = new if isinstance(node.node, (Var, TypeAlias)): # Handle them here just in case these aren't exposed through the AST. node.node.accept(NodeReplaceVisitor(replacements))