"""Prepare for IR transform. This needs to run after type checking and before generating IR. For example, construct partially initialized FuncIR and ClassIR objects for all functions and classes. This allows us to bind references to functions and classes before we've generated full IR for functions or classes. The actual IR transform will then populate all the missing bits, such as function bodies (basic blocks). Also build a mapping from mypy TypeInfos to ClassIR objects. """ from __future__ import annotations from collections import defaultdict from typing import Iterable, NamedTuple, Tuple from mypy.build import Graph from mypy.nodes import ( ARG_STAR, ARG_STAR2, CallExpr, ClassDef, Decorator, Expression, FuncDef, MemberExpr, MypyFile, NameExpr, OverloadedFuncDef, RefExpr, SymbolNode, TypeInfo, Var, ) from mypy.semanal import refers_to_fullname from mypy.traverser import TraverserVisitor from mypy.types import Instance, Type, get_proper_type from mypyc.common import PROPSET_PREFIX, get_id_from_name from mypyc.crash import catch_errors from mypyc.errors import Errors from mypyc.ir.class_ir import ClassIR from mypyc.ir.func_ir import ( FUNC_CLASSMETHOD, FUNC_NORMAL, FUNC_STATICMETHOD, FuncDecl, FuncSignature, RuntimeArg, ) from mypyc.ir.ops import DeserMaps from mypyc.ir.rtypes import RInstance, RType, dict_rprimitive, none_rprimitive, tuple_rprimitive from mypyc.irbuild.mapper import Mapper from mypyc.irbuild.util import ( get_func_def, get_mypyc_attrs, is_dataclass, is_extension_class, is_trait, ) from mypyc.options import CompilerOptions from mypyc.sametype import is_same_type def build_type_map( mapper: Mapper, modules: list[MypyFile], graph: Graph, types: dict[Expression, Type], options: CompilerOptions, errors: Errors, ) -> None: # Collect all classes defined in everything we are compiling classes = [] for module in modules: module_classes = [node for node in module.defs if isinstance(node, ClassDef)] classes.extend([(module, cdef) for cdef in module_classes]) # Collect all class mappings so that we can bind arbitrary class name # references even if there are import cycles. for module, cdef in classes: class_ir = ClassIR( cdef.name, module.fullname, is_trait(cdef), is_abstract=cdef.info.is_abstract ) class_ir.is_ext_class = is_extension_class(cdef) if class_ir.is_ext_class: class_ir.deletable = cdef.info.deletable_attributes.copy() # If global optimizations are disabled, turn of tracking of class children if not options.global_opts: class_ir.children = None mapper.type_to_ir[cdef.info] = class_ir # Populate structural information in class IR for extension classes. for module, cdef in classes: with catch_errors(module.path, cdef.line): if mapper.type_to_ir[cdef.info].is_ext_class: prepare_class_def(module.path, module.fullname, cdef, errors, mapper) else: prepare_non_ext_class_def(module.path, module.fullname, cdef, errors, mapper) # Prepare implicit attribute accessors as needed if an attribute overrides a property. for module, cdef in classes: class_ir = mapper.type_to_ir[cdef.info] if class_ir.is_ext_class: prepare_implicit_property_accessors(cdef.info, class_ir, module.fullname, mapper) # Collect all the functions also. We collect from the symbol table # so that we can easily pick out the right copy of a function that # is conditionally defined. for module in modules: for func in get_module_func_defs(module): prepare_func_def(module.fullname, None, func, mapper) # TODO: what else? # Check for incompatible attribute definitions that were not # flagged by mypy but can't be supported when compiling. for module, cdef in classes: class_ir = mapper.type_to_ir[cdef.info] for attr in class_ir.attributes: for base_ir in class_ir.mro[1:]: if attr in base_ir.attributes: if not is_same_type(class_ir.attributes[attr], base_ir.attributes[attr]): node = cdef.info.names[attr].node assert node is not None kind = "trait" if base_ir.is_trait else "class" errors.error( f'Type of "{attr}" is incompatible with ' f'definition in {kind} "{base_ir.name}"', module.path, node.line, ) def is_from_module(node: SymbolNode, module: MypyFile) -> bool: return node.fullname == module.fullname + "." + node.name def load_type_map(mapper: Mapper, modules: list[MypyFile], deser_ctx: DeserMaps) -> None: """Populate a Mapper with deserialized IR from a list of modules.""" for module in modules: for name, node in module.names.items(): if isinstance(node.node, TypeInfo) and is_from_module(node.node, module): ir = deser_ctx.classes[node.node.fullname] mapper.type_to_ir[node.node] = ir mapper.func_to_decl[node.node] = ir.ctor for module in modules: for func in get_module_func_defs(module): func_id = get_id_from_name(func.name, func.fullname, func.line) mapper.func_to_decl[func] = deser_ctx.functions[func_id].decl def get_module_func_defs(module: MypyFile) -> Iterable[FuncDef]: """Collect all of the (non-method) functions declared in a module.""" for name, node in module.names.items(): # We need to filter out functions that are imported or # aliases. The best way to do this seems to be by # checking that the fullname matches. if isinstance(node.node, (FuncDef, Decorator, OverloadedFuncDef)) and is_from_module( node.node, module ): yield get_func_def(node.node) def prepare_func_def( module_name: str, class_name: str | None, fdef: FuncDef, mapper: Mapper ) -> FuncDecl: kind = ( FUNC_STATICMETHOD if fdef.is_static else (FUNC_CLASSMETHOD if fdef.is_class else FUNC_NORMAL) ) decl = FuncDecl(fdef.name, class_name, module_name, mapper.fdef_to_sig(fdef), kind) mapper.func_to_decl[fdef] = decl return decl def prepare_method_def( ir: ClassIR, module_name: str, cdef: ClassDef, mapper: Mapper, node: FuncDef | Decorator ) -> None: if isinstance(node, FuncDef): ir.method_decls[node.name] = prepare_func_def(module_name, cdef.name, node, mapper) elif isinstance(node, Decorator): # TODO: do something about abstract methods here. Currently, they are handled just like # normal methods. decl = prepare_func_def(module_name, cdef.name, node.func, mapper) if not node.decorators: ir.method_decls[node.name] = decl elif isinstance(node.decorators[0], MemberExpr) and node.decorators[0].name == "setter": # Make property setter name different than getter name so there are no # name clashes when generating C code, and property lookup at the IR level # works correctly. decl.name = PROPSET_PREFIX + decl.name decl.is_prop_setter = True # Making the argument implicitly positional-only avoids unnecessary glue methods decl.sig.args[1].pos_only = True ir.method_decls[PROPSET_PREFIX + node.name] = decl if node.func.is_property: assert node.func.type, f"Expected return type annotation for property '{node.name}'" decl.is_prop_getter = True ir.property_types[node.name] = decl.sig.ret_type def is_valid_multipart_property_def(prop: OverloadedFuncDef) -> bool: # Checks to ensure supported property decorator semantics if len(prop.items) != 2: return False getter = prop.items[0] setter = prop.items[1] return ( isinstance(getter, Decorator) and isinstance(setter, Decorator) and getter.func.is_property and len(setter.decorators) == 1 and isinstance(setter.decorators[0], MemberExpr) and setter.decorators[0].name == "setter" ) def can_subclass_builtin(builtin_base: str) -> bool: # BaseException and dict are special cased. return builtin_base in ( ( "builtins.Exception", "builtins.LookupError", "builtins.IndexError", "builtins.Warning", "builtins.UserWarning", "builtins.ValueError", "builtins.object", ) ) def prepare_class_def( path: str, module_name: str, cdef: ClassDef, errors: Errors, mapper: Mapper ) -> None: """Populate the interface-level information in a class IR. This includes attribute and method declarations, and the MRO, among other things, but method bodies are generated in a later pass. """ ir = mapper.type_to_ir[cdef.info] info = cdef.info attrs = get_mypyc_attrs(cdef) if attrs.get("allow_interpreted_subclasses") is True: ir.allow_interpreted_subclasses = True if attrs.get("serializable") is True: # Supports copy.copy and pickle (including subclasses) ir._serializable = True # Check for subclassing from builtin types for cls in info.mro: # Special case exceptions and dicts # XXX: How do we handle *other* things?? if cls.fullname == "builtins.BaseException": ir.builtin_base = "PyBaseExceptionObject" elif cls.fullname == "builtins.dict": ir.builtin_base = "PyDictObject" elif cls.fullname.startswith("builtins."): if not can_subclass_builtin(cls.fullname): # Note that if we try to subclass a C extension class that # isn't in builtins, bad things will happen and we won't # catch it here! But this should catch a lot of the most # common pitfalls. errors.error( "Inheriting from most builtin types is unimplemented", path, cdef.line ) # Set up the parent class bases = [mapper.type_to_ir[base.type] for base in info.bases if base.type in mapper.type_to_ir] if len(bases) > 1 and any(not c.is_trait for c in bases) and bases[0].is_trait: # If the first base is a non-trait, don't ever error here. While it is correct # to error if a trait comes before the next non-trait base (e.g. non-trait, trait, # non-trait), it's pointless, confusing noise from the bigger issue: multiple # inheritance is *not* supported. errors.error("Non-trait base must appear first in parent list", path, cdef.line) ir.traits = [c for c in bases if c.is_trait] mro = [] # All mypyc base classes base_mro = [] # Non-trait mypyc base classes for cls in info.mro: if cls not in mapper.type_to_ir: if cls.fullname != "builtins.object": ir.inherits_python = True continue base_ir = mapper.type_to_ir[cls] if not base_ir.is_trait: base_mro.append(base_ir) mro.append(base_ir) if cls.defn.removed_base_type_exprs or not base_ir.is_ext_class: ir.inherits_python = True base_idx = 1 if not ir.is_trait else 0 if len(base_mro) > base_idx: ir.base = base_mro[base_idx] ir.mro = mro ir.base_mro = base_mro prepare_methods_and_attributes(cdef, ir, path, module_name, errors, mapper) prepare_init_method(cdef, ir, module_name, mapper) for base in bases: if base.children is not None: base.children.append(ir) if is_dataclass(cdef): ir.is_augmented = True def prepare_methods_and_attributes( cdef: ClassDef, ir: ClassIR, path: str, module_name: str, errors: Errors, mapper: Mapper ) -> None: """Populate attribute and method declarations.""" info = cdef.info for name, node in info.names.items(): # Currently all plugin generated methods are dummies and not included. if node.plugin_generated: continue if isinstance(node.node, Var): assert node.node.type, "Class member %s missing type" % name if not node.node.is_classvar and name not in ("__slots__", "__deletable__"): attr_rtype = mapper.type_to_rtype(node.node.type) if ir.is_trait and attr_rtype.error_overlap: # Traits don't have attribute definedness bitmaps, so use # property accessor methods to access attributes that need them. # We will generate accessor implementations that use the class bitmap # for any concrete subclasses. add_getter_declaration(ir, name, attr_rtype, module_name) add_setter_declaration(ir, name, attr_rtype, module_name) ir.attributes[name] = attr_rtype elif isinstance(node.node, (FuncDef, Decorator)): prepare_method_def(ir, module_name, cdef, mapper, node.node) elif isinstance(node.node, OverloadedFuncDef): # Handle case for property with both a getter and a setter if node.node.is_property: if is_valid_multipart_property_def(node.node): for item in node.node.items: prepare_method_def(ir, module_name, cdef, mapper, item) else: errors.error("Unsupported property decorator semantics", path, cdef.line) # Handle case for regular function overload else: assert node.node.impl prepare_method_def(ir, module_name, cdef, mapper, node.node.impl) if ir.builtin_base: ir.attributes.clear() def prepare_implicit_property_accessors( info: TypeInfo, ir: ClassIR, module_name: str, mapper: Mapper ) -> None: concrete_attributes = set() for base in ir.base_mro: for name, attr_rtype in base.attributes.items(): concrete_attributes.add(name) add_property_methods_for_attribute_if_needed( info, ir, name, attr_rtype, module_name, mapper ) for base in ir.mro[1:]: if base.is_trait: for name, attr_rtype in base.attributes.items(): if name not in concrete_attributes: add_property_methods_for_attribute_if_needed( info, ir, name, attr_rtype, module_name, mapper ) def add_property_methods_for_attribute_if_needed( info: TypeInfo, ir: ClassIR, attr_name: str, attr_rtype: RType, module_name: str, mapper: Mapper, ) -> None: """Add getter and/or setter for attribute if defined as property in a base class. Only add declarations. The body IR will be synthesized later during irbuild. """ for base in info.mro[1:]: if base in mapper.type_to_ir: base_ir = mapper.type_to_ir[base] n = base.names.get(attr_name) if n is None: continue node = n.node if isinstance(node, Decorator) and node.name not in ir.method_decls: # Defined as a read-only property in base class/trait add_getter_declaration(ir, attr_name, attr_rtype, module_name) elif isinstance(node, OverloadedFuncDef) and is_valid_multipart_property_def(node): # Defined as a read-write property in base class/trait add_getter_declaration(ir, attr_name, attr_rtype, module_name) add_setter_declaration(ir, attr_name, attr_rtype, module_name) elif base_ir.is_trait and attr_rtype.error_overlap: add_getter_declaration(ir, attr_name, attr_rtype, module_name) add_setter_declaration(ir, attr_name, attr_rtype, module_name) def add_getter_declaration( ir: ClassIR, attr_name: str, attr_rtype: RType, module_name: str ) -> None: self_arg = RuntimeArg("self", RInstance(ir), pos_only=True) sig = FuncSignature([self_arg], attr_rtype) decl = FuncDecl(attr_name, ir.name, module_name, sig, FUNC_NORMAL) decl.is_prop_getter = True decl.implicit = True # Triggers synthesization ir.method_decls[attr_name] = decl ir.property_types[attr_name] = attr_rtype # TODO: Needed?? def add_setter_declaration( ir: ClassIR, attr_name: str, attr_rtype: RType, module_name: str ) -> None: self_arg = RuntimeArg("self", RInstance(ir), pos_only=True) value_arg = RuntimeArg("value", attr_rtype, pos_only=True) sig = FuncSignature([self_arg, value_arg], none_rprimitive) setter_name = PROPSET_PREFIX + attr_name decl = FuncDecl(setter_name, ir.name, module_name, sig, FUNC_NORMAL) decl.is_prop_setter = True decl.implicit = True # Triggers synthesization ir.method_decls[setter_name] = decl def prepare_init_method(cdef: ClassDef, ir: ClassIR, module_name: str, mapper: Mapper) -> None: # Set up a constructor decl init_node = cdef.info["__init__"].node if not ir.is_trait and not ir.builtin_base and isinstance(init_node, FuncDef): init_sig = mapper.fdef_to_sig(init_node) defining_ir = mapper.type_to_ir.get(init_node.info) # If there is a nontrivial __init__ that wasn't defined in an # extension class, we need to make the constructor take *args, # **kwargs so it can call tp_init. if ( defining_ir is None or not defining_ir.is_ext_class or cdef.info["__init__"].plugin_generated ) and init_node.info.fullname != "builtins.object": init_sig = FuncSignature( [ init_sig.args[0], RuntimeArg("args", tuple_rprimitive, ARG_STAR), RuntimeArg("kwargs", dict_rprimitive, ARG_STAR2), ], init_sig.ret_type, ) last_arg = len(init_sig.args) - init_sig.num_bitmap_args ctor_sig = FuncSignature(init_sig.args[1:last_arg], RInstance(ir)) ir.ctor = FuncDecl(cdef.name, None, module_name, ctor_sig) mapper.func_to_decl[cdef.info] = ir.ctor def prepare_non_ext_class_def( path: str, module_name: str, cdef: ClassDef, errors: Errors, mapper: Mapper ) -> None: ir = mapper.type_to_ir[cdef.info] info = cdef.info for name, node in info.names.items(): if isinstance(node.node, (FuncDef, Decorator)): prepare_method_def(ir, module_name, cdef, mapper, node.node) elif isinstance(node.node, OverloadedFuncDef): # Handle case for property with both a getter and a setter if node.node.is_property: if not is_valid_multipart_property_def(node.node): errors.error("Unsupported property decorator semantics", path, cdef.line) for item in node.node.items: prepare_method_def(ir, module_name, cdef, mapper, item) # Handle case for regular function overload else: prepare_method_def(ir, module_name, cdef, mapper, get_func_def(node.node)) if any(cls in mapper.type_to_ir and mapper.type_to_ir[cls].is_ext_class for cls in info.mro): errors.error( "Non-extension classes may not inherit from extension classes", path, cdef.line ) RegisterImplInfo = Tuple[TypeInfo, FuncDef] class SingledispatchInfo(NamedTuple): singledispatch_impls: dict[FuncDef, list[RegisterImplInfo]] decorators_to_remove: dict[FuncDef, list[int]] def find_singledispatch_register_impls( modules: list[MypyFile], errors: Errors ) -> SingledispatchInfo: visitor = SingledispatchVisitor(errors) for module in modules: visitor.current_path = module.path module.accept(visitor) return SingledispatchInfo(visitor.singledispatch_impls, visitor.decorators_to_remove) class SingledispatchVisitor(TraverserVisitor): current_path: str def __init__(self, errors: Errors) -> None: super().__init__() # Map of main singledispatch function to list of registered implementations self.singledispatch_impls: defaultdict[FuncDef, list[RegisterImplInfo]] = defaultdict(list) # Map of decorated function to the indices of any decorators to remove self.decorators_to_remove: dict[FuncDef, list[int]] = {} self.errors: Errors = errors def visit_decorator(self, dec: Decorator) -> None: if dec.decorators: decorators_to_store = dec.decorators.copy() decorators_to_remove: list[int] = [] # the index of the last non-register decorator before finding a register decorator # when going through decorators from top to bottom last_non_register: int | None = None for i, d in enumerate(decorators_to_store): impl = get_singledispatch_register_call_info(d, dec.func) if impl is not None: self.singledispatch_impls[impl.singledispatch_func].append( (impl.dispatch_type, dec.func) ) decorators_to_remove.append(i) if last_non_register is not None: # found a register decorator after a non-register decorator, which we # don't support because we'd have to make a copy of the function before # calling the decorator so that we can call it later, which complicates # the implementation for something that is probably not commonly used self.errors.error( "Calling decorator after registering function not supported", self.current_path, decorators_to_store[last_non_register].line, ) else: if refers_to_fullname(d, "functools.singledispatch"): decorators_to_remove.append(i) # make sure that we still treat the function as a singledispatch function # even if we don't find any registered implementations (which might happen # if all registered implementations are registered dynamically) self.singledispatch_impls.setdefault(dec.func, []) last_non_register = i if decorators_to_remove: # calling register on a function that tries to dispatch based on type annotations # raises a TypeError because compiled functions don't have an __annotations__ # attribute self.decorators_to_remove[dec.func] = decorators_to_remove super().visit_decorator(dec) class RegisteredImpl(NamedTuple): singledispatch_func: FuncDef dispatch_type: TypeInfo def get_singledispatch_register_call_info( decorator: Expression, func: FuncDef ) -> RegisteredImpl | None: # @fun.register(complex) # def g(arg): ... if ( isinstance(decorator, CallExpr) and len(decorator.args) == 1 and isinstance(decorator.args[0], RefExpr) ): callee = decorator.callee dispatch_type = decorator.args[0].node if not isinstance(dispatch_type, TypeInfo): return None if isinstance(callee, MemberExpr): return registered_impl_from_possible_register_call(callee, dispatch_type) # @fun.register # def g(arg: int): ... elif isinstance(decorator, MemberExpr): # we don't know if this is a register call yet, so we can't be sure that the function # actually has arguments if not func.arguments: return None arg_type = get_proper_type(func.arguments[0].variable.type) if not isinstance(arg_type, Instance): return None info = arg_type.type return registered_impl_from_possible_register_call(decorator, info) return None def registered_impl_from_possible_register_call( expr: MemberExpr, dispatch_type: TypeInfo ) -> RegisteredImpl | None: if expr.name == "register" and isinstance(expr.expr, NameExpr): node = expr.expr.node if isinstance(node, Decorator): return RegisteredImpl(node.func, dispatch_type) return None