"""Shared definitions used by different parts of semantic analysis.""" from __future__ import annotations from abc import abstractmethod from typing import Callable, Final, overload from typing_extensions import Literal, Protocol from mypy_extensions import trait from mypy import join from mypy.errorcodes import LITERAL_REQ, ErrorCode from mypy.nodes import ( CallExpr, ClassDef, Context, DataclassTransformSpec, Decorator, Expression, FuncDef, NameExpr, Node, OverloadedFuncDef, RefExpr, SymbolNode, SymbolTable, SymbolTableNode, TypeInfo, ) from mypy.plugin import SemanticAnalyzerPluginInterface from mypy.tvar_scope import TypeVarLikeScope from mypy.type_visitor import ANY_STRATEGY, BoolTypeQuery from mypy.types import ( TPDICT_FB_NAMES, AnyType, FunctionLike, Instance, Parameters, ParamSpecFlavor, ParamSpecType, PlaceholderType, ProperType, TupleType, Type, TypeOfAny, TypeVarId, TypeVarLikeType, get_proper_type, ) # Subclasses can override these Var attributes with incompatible types. This can also be # set for individual attributes using 'allow_incompatible_override' of Var. ALLOW_INCOMPATIBLE_OVERRIDE: Final = ("__slots__", "__deletable__", "__match_args__") # Priorities for ordering of patches within the "patch" phase of semantic analysis # (after the main pass): # Fix fallbacks (does joins) PRIORITY_FALLBACKS: Final = 1 @trait class SemanticAnalyzerCoreInterface: """A core abstract interface to generic semantic analyzer functionality. This is implemented by both semantic analyzer passes 2 and 3. """ @abstractmethod def lookup_qualified( self, name: str, ctx: Context, suppress_errors: bool = False ) -> SymbolTableNode | None: raise NotImplementedError @abstractmethod def lookup_fully_qualified(self, name: str) -> SymbolTableNode: raise NotImplementedError @abstractmethod def lookup_fully_qualified_or_none(self, name: str) -> SymbolTableNode | None: raise NotImplementedError @abstractmethod def fail( self, msg: str, ctx: Context, serious: bool = False, *, blocker: bool = False, code: ErrorCode | None = None, ) -> None: raise NotImplementedError @abstractmethod def note(self, msg: str, ctx: Context, *, code: ErrorCode | None = None) -> None: raise NotImplementedError @abstractmethod def incomplete_feature_enabled(self, feature: str, ctx: Context) -> bool: raise NotImplementedError @abstractmethod def record_incomplete_ref(self) -> None: raise NotImplementedError @abstractmethod def defer(self, debug_context: Context | None = None, force_progress: bool = False) -> None: raise NotImplementedError @abstractmethod def is_incomplete_namespace(self, fullname: str) -> bool: """Is a module or class namespace potentially missing some definitions?""" raise NotImplementedError @property @abstractmethod def final_iteration(self) -> bool: """Is this the final iteration of semantic analysis?""" raise NotImplementedError @abstractmethod def is_future_flag_set(self, flag: str) -> bool: """Is the specific __future__ feature imported""" raise NotImplementedError @property @abstractmethod def is_stub_file(self) -> bool: raise NotImplementedError @abstractmethod def is_func_scope(self) -> bool: raise NotImplementedError @property @abstractmethod def type(self) -> TypeInfo | None: raise NotImplementedError @trait class SemanticAnalyzerInterface(SemanticAnalyzerCoreInterface): """A limited abstract interface to some generic semantic analyzer pass 2 functionality. We use this interface for various reasons: * Looser coupling * Cleaner import graph * Less need to pass around callback functions """ tvar_scope: TypeVarLikeScope @abstractmethod def lookup( self, name: str, ctx: Context, suppress_errors: bool = False ) -> SymbolTableNode | None: raise NotImplementedError @abstractmethod def named_type(self, fullname: str, args: list[Type] | None = None) -> Instance: raise NotImplementedError @abstractmethod def named_type_or_none(self, fullname: str, args: list[Type] | None = None) -> Instance | None: raise NotImplementedError @abstractmethod def accept(self, node: Node) -> None: raise NotImplementedError @abstractmethod def anal_type( self, t: Type, *, tvar_scope: TypeVarLikeScope | None = None, allow_tuple_literal: bool = False, allow_unbound_tvars: bool = False, allow_required: bool = False, allow_placeholder: bool = False, report_invalid_types: bool = True, prohibit_self_type: str | None = None, ) -> Type | None: raise NotImplementedError @abstractmethod def get_and_bind_all_tvars(self, type_exprs: list[Expression]) -> list[TypeVarLikeType]: raise NotImplementedError @abstractmethod def basic_new_typeinfo(self, name: str, basetype_or_fallback: Instance, line: int) -> TypeInfo: raise NotImplementedError @abstractmethod def schedule_patch(self, priority: int, fn: Callable[[], None]) -> None: raise NotImplementedError @abstractmethod def add_symbol_table_node(self, name: str, stnode: SymbolTableNode) -> bool: """Add node to the current symbol table.""" raise NotImplementedError @abstractmethod def current_symbol_table(self) -> SymbolTable: """Get currently active symbol table. May be module, class, or local namespace. """ raise NotImplementedError @abstractmethod def add_symbol( self, name: str, node: SymbolNode, context: Context, module_public: bool = True, module_hidden: bool = False, can_defer: bool = True, ) -> bool: """Add symbol to the current symbol table.""" raise NotImplementedError @abstractmethod def add_symbol_skip_local(self, name: str, node: SymbolNode) -> None: """Add symbol to the current symbol table, skipping locals. This is used to store symbol nodes in a symbol table that is going to be serialized (local namespaces are not serialized). See implementation docstring for more details. """ raise NotImplementedError @abstractmethod def parse_bool(self, expr: Expression) -> bool | None: raise NotImplementedError @abstractmethod def qualified_name(self, n: str) -> str: raise NotImplementedError @property @abstractmethod def is_typeshed_stub_file(self) -> bool: raise NotImplementedError @abstractmethod def process_placeholder( self, name: str | None, kind: str, ctx: Context, force_progress: bool = False ) -> None: raise NotImplementedError def set_callable_name(sig: Type, fdef: FuncDef) -> ProperType: sig = get_proper_type(sig) if isinstance(sig, FunctionLike): if fdef.info: if fdef.info.fullname in TPDICT_FB_NAMES: # Avoid exposing the internal _TypedDict name. class_name = "TypedDict" else: class_name = fdef.info.name return sig.with_name(f"{fdef.name} of {class_name}") else: return sig.with_name(fdef.name) else: return sig def calculate_tuple_fallback(typ: TupleType) -> None: """Calculate a precise item type for the fallback of a tuple type. This must be called only after the main semantic analysis pass, since joins aren't available before that. Note that there is an apparent chicken and egg problem with respect to verifying type arguments against bounds. Verifying bounds might require fallbacks, but we might use the bounds to calculate the fallbacks. In practice this is not a problem, since the worst that can happen is that we have invalid type argument values, and these can happen in later stages as well (they will generate errors, but we don't prevent their existence). """ fallback = typ.partial_fallback assert fallback.type.fullname == "builtins.tuple" fallback.args = (join.join_type_list(list(typ.items)),) + fallback.args[1:] class _NamedTypeCallback(Protocol): def __call__(self, fully_qualified_name: str, args: list[Type] | None = None) -> Instance: ... def paramspec_args( name: str, fullname: str, id: TypeVarId | int, *, named_type_func: _NamedTypeCallback, line: int = -1, column: int = -1, prefix: Parameters | None = None, ) -> ParamSpecType: return ParamSpecType( name, fullname, id, flavor=ParamSpecFlavor.ARGS, upper_bound=named_type_func("builtins.tuple", [named_type_func("builtins.object")]), default=AnyType(TypeOfAny.from_omitted_generics), line=line, column=column, prefix=prefix, ) def paramspec_kwargs( name: str, fullname: str, id: TypeVarId | int, *, named_type_func: _NamedTypeCallback, line: int = -1, column: int = -1, prefix: Parameters | None = None, ) -> ParamSpecType: return ParamSpecType( name, fullname, id, flavor=ParamSpecFlavor.KWARGS, upper_bound=named_type_func( "builtins.dict", [named_type_func("builtins.str"), named_type_func("builtins.object")] ), default=AnyType(TypeOfAny.from_omitted_generics), line=line, column=column, prefix=prefix, ) class HasPlaceholders(BoolTypeQuery): def __init__(self) -> None: super().__init__(ANY_STRATEGY) def visit_placeholder_type(self, t: PlaceholderType) -> bool: return True def has_placeholder(typ: Type) -> bool: """Check if a type contains any placeholder types (recursively).""" return typ.accept(HasPlaceholders()) def find_dataclass_transform_spec(node: Node | None) -> DataclassTransformSpec | None: """ Find the dataclass transform spec for the given node, if any exists. Per PEP 681 (https://peps.python.org/pep-0681/#the-dataclass-transform-decorator), dataclass transforms can be specified in multiple ways, including decorator functions and metaclasses/base classes. This function resolves the spec from any of these variants. """ # The spec only lives on the function/class definition itself, so we need to unwrap down to that # point if isinstance(node, CallExpr): # Like dataclasses.dataclass, transform-based decorators can be applied either with or # without parameters; ie, both of these forms are accepted: # # @typing.dataclass_transform # class Foo: ... # @typing.dataclass_transform(eq=True, order=True, ...) # class Bar: ... # # We need to unwrap the call for the second variant. node = node.callee if isinstance(node, RefExpr): node = node.node if isinstance(node, Decorator): # typing.dataclass_transform usage must always result in a Decorator; it always uses the # `@dataclass_transform(...)` syntax and never `@dataclass_transform` node = node.func if isinstance(node, OverloadedFuncDef): # The dataclass_transform decorator may be attached to any single overload, so we must # search them all. # Note that using more than one decorator is undefined behavior, so we can just take the # first that we find. for candidate in node.items: spec = find_dataclass_transform_spec(candidate) if spec is not None: return spec return find_dataclass_transform_spec(node.impl) # For functions, we can directly consult the AST field for the spec if isinstance(node, FuncDef): return node.dataclass_transform_spec if isinstance(node, ClassDef): node = node.info if isinstance(node, TypeInfo): # Search all parent classes to see if any are decorated with `typing.dataclass_transform` for base in node.mro[1:]: if base.dataclass_transform_spec is not None: return base.dataclass_transform_spec # Check if there is a metaclass that is decorated with `typing.dataclass_transform` # # Note that PEP 681 only discusses using a metaclass that is directly decorated with # `typing.dataclass_transform`; subclasses thereof should be treated with dataclass # semantics rather than as transforms: # # > If dataclass_transform is applied to a class, dataclass-like semantics will be assumed # > for any class that directly or indirectly derives from the decorated class or uses the # > decorated class as a metaclass. # # The wording doesn't make this entirely explicit, but Pyright (the reference # implementation for this PEP) only handles directly-decorated metaclasses. metaclass_type = node.metaclass_type if metaclass_type is not None and metaclass_type.type.dataclass_transform_spec is not None: return metaclass_type.type.dataclass_transform_spec return None # Never returns `None` if a default is given @overload def require_bool_literal_argument( api: SemanticAnalyzerInterface | SemanticAnalyzerPluginInterface, expression: Expression, name: str, default: Literal[True] | Literal[False], ) -> bool: ... @overload def require_bool_literal_argument( api: SemanticAnalyzerInterface | SemanticAnalyzerPluginInterface, expression: Expression, name: str, default: None = None, ) -> bool | None: ... def require_bool_literal_argument( api: SemanticAnalyzerInterface | SemanticAnalyzerPluginInterface, expression: Expression, name: str, default: bool | None = None, ) -> bool | None: """Attempt to interpret an expression as a boolean literal, and fail analysis if we can't.""" value = parse_bool(expression) if value is None: api.fail( f'"{name}" argument must be a True or False literal', expression, code=LITERAL_REQ ) return default return value def parse_bool(expr: Expression) -> bool | None: if isinstance(expr, NameExpr): if expr.fullname == "builtins.True": return True if expr.fullname == "builtins.False": return False return None