gtn/.venv/Lib/site-packages/mypyc/codegen/emit.py

1194 lines
46 KiB
Python
Raw Normal View History

"""Utilities for emitting C code."""
from __future__ import annotations
import pprint
import sys
import textwrap
from typing import Callable, Final
from mypyc.codegen.literals import Literals
from mypyc.common import (
ATTR_PREFIX,
BITMAP_BITS,
FAST_ISINSTANCE_MAX_SUBCLASSES,
NATIVE_PREFIX,
REG_PREFIX,
STATIC_PREFIX,
TYPE_PREFIX,
use_vectorcall,
)
from mypyc.ir.class_ir import ClassIR, all_concrete_classes
from mypyc.ir.func_ir import FuncDecl
from mypyc.ir.ops import BasicBlock, Value
from mypyc.ir.rtypes import (
RInstance,
RPrimitive,
RTuple,
RType,
RUnion,
int_rprimitive,
is_bit_rprimitive,
is_bool_rprimitive,
is_bytes_rprimitive,
is_dict_rprimitive,
is_fixed_width_rtype,
is_float_rprimitive,
is_int16_rprimitive,
is_int32_rprimitive,
is_int64_rprimitive,
is_int_rprimitive,
is_list_rprimitive,
is_none_rprimitive,
is_object_rprimitive,
is_optional_type,
is_range_rprimitive,
is_set_rprimitive,
is_short_int_rprimitive,
is_str_rprimitive,
is_tuple_rprimitive,
is_uint8_rprimitive,
object_rprimitive,
optional_value_type,
)
from mypyc.namegen import NameGenerator, exported_name
from mypyc.sametype import is_same_type
# Whether to insert debug asserts for all error handling, to quickly
# catch errors propagating without exceptions set.
DEBUG_ERRORS: Final = False
class HeaderDeclaration:
"""A representation of a declaration in C.
This is used to generate declarations in header files and
(optionally) definitions in source files.
Attributes:
decl: C source code for the declaration.
defn: Optionally, C source code for a definition.
dependencies: The names of any objects that must be declared prior.
is_type: Whether the declaration is of a C type. (C types will be declared in
external header files and not marked 'extern'.)
needs_export: Whether the declared object needs to be exported to
other modules in the linking table.
"""
def __init__(
self,
decl: str | list[str],
defn: list[str] | None = None,
*,
dependencies: set[str] | None = None,
is_type: bool = False,
needs_export: bool = False,
) -> None:
self.decl = [decl] if isinstance(decl, str) else decl
self.defn = defn
self.dependencies = dependencies or set()
self.is_type = is_type
self.needs_export = needs_export
class EmitterContext:
"""Shared emitter state for a compilation group."""
def __init__(
self,
names: NameGenerator,
group_name: str | None = None,
group_map: dict[str, str | None] | None = None,
) -> None:
"""Setup shared emitter state.
Args:
names: The name generator to use
group_map: Map from module names to group name
group_name: Current group name
"""
self.temp_counter = 0
self.names = names
self.group_name = group_name
self.group_map = group_map or {}
# Groups that this group depends on
self.group_deps: set[str] = set()
# The map below is used for generating declarations and
# definitions at the top of the C file. The main idea is that they can
# be generated at any time during the emit phase.
# A map of a C identifier to whatever the C identifier declares. Currently this is
# used for declaring structs and the key corresponds to the name of the struct.
# The declaration contains the body of the struct.
self.declarations: dict[str, HeaderDeclaration] = {}
self.literals = Literals()
class ErrorHandler:
"""Describes handling errors in unbox/cast operations."""
class AssignHandler(ErrorHandler):
"""Assign an error value on error."""
class GotoHandler(ErrorHandler):
"""Goto label on error."""
def __init__(self, label: str) -> None:
self.label = label
class TracebackAndGotoHandler(ErrorHandler):
"""Add traceback item and goto label on error."""
def __init__(
self, label: str, source_path: str, module_name: str, traceback_entry: tuple[str, int]
) -> None:
self.label = label
self.source_path = source_path
self.module_name = module_name
self.traceback_entry = traceback_entry
class ReturnHandler(ErrorHandler):
"""Return a constant value on error."""
def __init__(self, value: str) -> None:
self.value = value
class Emitter:
"""Helper for C code generation."""
def __init__(
self,
context: EmitterContext,
value_names: dict[Value, str] | None = None,
capi_version: tuple[int, int] | None = None,
) -> None:
self.context = context
self.capi_version = capi_version or sys.version_info[:2]
self.names = context.names
self.value_names = value_names or {}
self.fragments: list[str] = []
self._indent = 0
# Low-level operations
def indent(self) -> None:
self._indent += 4
def dedent(self) -> None:
self._indent -= 4
assert self._indent >= 0
def label(self, label: BasicBlock) -> str:
return "CPyL%s" % label.label
def reg(self, reg: Value) -> str:
return REG_PREFIX + self.value_names[reg]
def attr(self, name: str) -> str:
return ATTR_PREFIX + name
def object_annotation(self, obj: object, line: str) -> str:
"""Build a C comment with an object's string represention.
If the comment exceeds the line length limit, it's wrapped into a
multiline string (with the extra lines indented to be aligned with
the first line's comment).
If it contains illegal characters, an empty string is returned."""
line_width = self._indent + len(line)
formatted = pprint.pformat(obj, compact=True, width=max(90 - line_width, 20))
if any(x in formatted for x in ("/*", "*/", "\0")):
return ""
if "\n" in formatted:
first_line, rest = formatted.split("\n", maxsplit=1)
comment_continued = textwrap.indent(rest, (line_width + 3) * " ")
return f" /* {first_line}\n{comment_continued} */"
else:
return f" /* {formatted} */"
def emit_line(self, line: str = "", *, ann: object = None) -> None:
if line.startswith("}"):
self.dedent()
comment = self.object_annotation(ann, line) if ann is not None else ""
self.fragments.append(self._indent * " " + line + comment + "\n")
if line.endswith("{"):
self.indent()
def emit_lines(self, *lines: str) -> None:
for line in lines:
self.emit_line(line)
def emit_label(self, label: BasicBlock | str) -> None:
if isinstance(label, str):
text = label
else:
if label.label == 0 or not label.referenced:
return
text = self.label(label)
# Extra semicolon prevents an error when the next line declares a tempvar
self.fragments.append(f"{text}: ;\n")
def emit_from_emitter(self, emitter: Emitter) -> None:
self.fragments.extend(emitter.fragments)
def emit_printf(self, fmt: str, *args: str) -> None:
fmt = fmt.replace("\n", "\\n")
self.emit_line("printf(%s);" % ", ".join(['"%s"' % fmt] + list(args)))
self.emit_line("fflush(stdout);")
def temp_name(self) -> str:
self.context.temp_counter += 1
return "__tmp%d" % self.context.temp_counter
def new_label(self) -> str:
self.context.temp_counter += 1
return "__LL%d" % self.context.temp_counter
def get_module_group_prefix(self, module_name: str) -> str:
"""Get the group prefix for a module (relative to the current group).
The prefix should be prepended to the object name whenever
accessing an object from this module.
If the module lives is in the current compilation group, there is
no prefix. But if it lives in a different group (and hence a separate
extension module), we need to access objects from it indirectly via an
export table.
For example, for code in group `a` to call a function `bar` in group `b`,
it would need to do `exports_b.CPyDef_bar(...)`, while code that is
also in group `b` can simply do `CPyDef_bar(...)`.
Thus the prefix for a module in group `b` is 'exports_b.' if the current
group is *not* b and just '' if it is.
"""
groups = self.context.group_map
target_group_name = groups.get(module_name)
if target_group_name and target_group_name != self.context.group_name:
self.context.group_deps.add(target_group_name)
return f"exports_{exported_name(target_group_name)}."
else:
return ""
def get_group_prefix(self, obj: ClassIR | FuncDecl) -> str:
"""Get the group prefix for an object."""
# See docs above
return self.get_module_group_prefix(obj.module_name)
def static_name(self, id: str, module: str | None, prefix: str = STATIC_PREFIX) -> str:
"""Create name of a C static variable.
These are used for literals and imported modules, among other
things.
The caller should ensure that the (id, module) pair cannot
overlap with other calls to this method within a compilation
group.
"""
lib_prefix = "" if not module else self.get_module_group_prefix(module)
# If we are accessing static via the export table, we need to dereference
# the pointer also.
star_maybe = "*" if lib_prefix else ""
suffix = self.names.private_name(module or "", id)
return f"{star_maybe}{lib_prefix}{prefix}{suffix}"
def type_struct_name(self, cl: ClassIR) -> str:
return self.static_name(cl.name, cl.module_name, prefix=TYPE_PREFIX)
def ctype(self, rtype: RType) -> str:
return rtype._ctype
def ctype_spaced(self, rtype: RType) -> str:
"""Adds a space after ctype for non-pointers."""
ctype = self.ctype(rtype)
if ctype[-1] == "*":
return ctype
else:
return ctype + " "
def c_undefined_value(self, rtype: RType) -> str:
if not rtype.is_unboxed:
return "NULL"
elif isinstance(rtype, RPrimitive):
return rtype.c_undefined
elif isinstance(rtype, RTuple):
return self.tuple_undefined_value(rtype)
assert False, rtype
def c_error_value(self, rtype: RType) -> str:
return self.c_undefined_value(rtype)
def native_function_name(self, fn: FuncDecl) -> str:
return f"{NATIVE_PREFIX}{fn.cname(self.names)}"
def tuple_c_declaration(self, rtuple: RTuple) -> list[str]:
result = [
f"#ifndef MYPYC_DECLARED_{rtuple.struct_name}",
f"#define MYPYC_DECLARED_{rtuple.struct_name}",
f"typedef struct {rtuple.struct_name} {{",
]
if len(rtuple.types) == 0: # empty tuple
# Empty tuples contain a flag so that they can still indicate
# error values.
result.append("int empty_struct_error_flag;")
else:
i = 0
for typ in rtuple.types:
result.append(f"{self.ctype_spaced(typ)}f{i};")
i += 1
result.append(f"}} {rtuple.struct_name};")
result.append("#endif")
result.append("")
return result
def bitmap_field(self, index: int) -> str:
"""Return C field name used for attribute bitmap."""
n = index // BITMAP_BITS
if n == 0:
return "bitmap"
return f"bitmap{n + 1}"
def attr_bitmap_expr(self, obj: str, cl: ClassIR, index: int) -> str:
"""Return reference to the attribute definedness bitmap."""
cast = f"({cl.struct_name(self.names)} *)"
attr = self.bitmap_field(index)
return f"({cast}{obj})->{attr}"
def emit_attr_bitmap_set(
self, value: str, obj: str, rtype: RType, cl: ClassIR, attr: str
) -> None:
"""Mark an attribute as defined in the attribute bitmap.
Assumes that the attribute is tracked in the bitmap (only some attributes
use the bitmap). If 'value' is not equal to the error value, do nothing.
"""
self._emit_attr_bitmap_update(value, obj, rtype, cl, attr, clear=False)
def emit_attr_bitmap_clear(self, obj: str, rtype: RType, cl: ClassIR, attr: str) -> None:
"""Mark an attribute as undefined in the attribute bitmap.
Unlike emit_attr_bitmap_set, clear unconditionally.
"""
self._emit_attr_bitmap_update("", obj, rtype, cl, attr, clear=True)
def _emit_attr_bitmap_update(
self, value: str, obj: str, rtype: RType, cl: ClassIR, attr: str, clear: bool
) -> None:
if value:
check = self.error_value_check(rtype, value, "==")
self.emit_line(f"if (unlikely({check})) {{")
index = cl.bitmap_attrs.index(attr)
mask = 1 << (index & (BITMAP_BITS - 1))
bitmap = self.attr_bitmap_expr(obj, cl, index)
if clear:
self.emit_line(f"{bitmap} &= ~{mask};")
else:
self.emit_line(f"{bitmap} |= {mask};")
if value:
self.emit_line("}")
def use_vectorcall(self) -> bool:
return use_vectorcall(self.capi_version)
def emit_undefined_attr_check(
self,
rtype: RType,
attr_expr: str,
compare: str,
obj: str,
attr: str,
cl: ClassIR,
*,
unlikely: bool = False,
) -> None:
check = self.error_value_check(rtype, attr_expr, compare)
if unlikely:
check = f"unlikely({check})"
if rtype.error_overlap:
index = cl.bitmap_attrs.index(attr)
bit = 1 << (index & (BITMAP_BITS - 1))
attr = self.bitmap_field(index)
obj_expr = f"({cl.struct_name(self.names)} *){obj}"
check = f"{check} && !(({obj_expr})->{attr} & {bit})"
self.emit_line(f"if ({check}) {{")
def error_value_check(self, rtype: RType, value: str, compare: str) -> str:
if isinstance(rtype, RTuple):
return self.tuple_undefined_check_cond(
rtype, value, self.c_error_value, compare, check_exception=False
)
else:
return f"{value} {compare} {self.c_error_value(rtype)}"
def tuple_undefined_check_cond(
self,
rtuple: RTuple,
tuple_expr_in_c: str,
c_type_compare_val: Callable[[RType], str],
compare: str,
*,
check_exception: bool = True,
) -> str:
if len(rtuple.types) == 0:
# empty tuple
return "{}.empty_struct_error_flag {} {}".format(
tuple_expr_in_c, compare, c_type_compare_val(int_rprimitive)
)
if rtuple.error_overlap:
i = 0
item_type = rtuple.types[0]
else:
for i, typ in enumerate(rtuple.types):
if not typ.error_overlap:
item_type = rtuple.types[i]
break
else:
assert False, "not expecting tuple with error overlap"
if isinstance(item_type, RTuple):
return self.tuple_undefined_check_cond(
item_type, tuple_expr_in_c + f".f{i}", c_type_compare_val, compare
)
else:
check = f"{tuple_expr_in_c}.f{i} {compare} {c_type_compare_val(item_type)}"
if rtuple.error_overlap and check_exception:
check += " && PyErr_Occurred()"
return check
def tuple_undefined_value(self, rtuple: RTuple) -> str:
"""Undefined tuple value suitable in an expression."""
return f"({rtuple.struct_name}) {self.c_initializer_undefined_value(rtuple)}"
def c_initializer_undefined_value(self, rtype: RType) -> str:
"""Undefined value represented in a form suitable for variable initialization."""
if isinstance(rtype, RTuple):
if not rtype.types:
# Empty tuples contain a flag so that they can still indicate
# error values.
return f"{{ {int_rprimitive.c_undefined} }}"
items = ", ".join([self.c_initializer_undefined_value(t) for t in rtype.types])
return f"{{ {items} }}"
else:
return self.c_undefined_value(rtype)
# Higher-level operations
def declare_tuple_struct(self, tuple_type: RTuple) -> None:
if tuple_type.struct_name not in self.context.declarations:
dependencies = set()
for typ in tuple_type.types:
# XXX other types might eventually need similar behavior
if isinstance(typ, RTuple):
dependencies.add(typ.struct_name)
self.context.declarations[tuple_type.struct_name] = HeaderDeclaration(
self.tuple_c_declaration(tuple_type), dependencies=dependencies, is_type=True
)
def emit_inc_ref(self, dest: str, rtype: RType, *, rare: bool = False) -> None:
"""Increment reference count of C expression `dest`.
For composite unboxed structures (e.g. tuples) recursively
increment reference counts for each component.
If rare is True, optimize for code size and compilation speed.
"""
if is_int_rprimitive(rtype):
if rare:
self.emit_line("CPyTagged_IncRef(%s);" % dest)
else:
self.emit_line("CPyTagged_INCREF(%s);" % dest)
elif isinstance(rtype, RTuple):
for i, item_type in enumerate(rtype.types):
self.emit_inc_ref(f"{dest}.f{i}", item_type)
elif not rtype.is_unboxed:
# Always inline, since this is a simple op
self.emit_line("CPy_INCREF(%s);" % dest)
# Otherwise assume it's an unboxed, pointerless value and do nothing.
def emit_dec_ref(
self, dest: str, rtype: RType, *, is_xdec: bool = False, rare: bool = False
) -> None:
"""Decrement reference count of C expression `dest`.
For composite unboxed structures (e.g. tuples) recursively
decrement reference counts for each component.
If rare is True, optimize for code size and compilation speed.
"""
x = "X" if is_xdec else ""
if is_int_rprimitive(rtype):
if rare:
self.emit_line(f"CPyTagged_{x}DecRef({dest});")
else:
# Inlined
self.emit_line(f"CPyTagged_{x}DECREF({dest});")
elif isinstance(rtype, RTuple):
for i, item_type in enumerate(rtype.types):
self.emit_dec_ref(f"{dest}.f{i}", item_type, is_xdec=is_xdec, rare=rare)
elif not rtype.is_unboxed:
if rare:
self.emit_line(f"CPy_{x}DecRef({dest});")
else:
# Inlined
self.emit_line(f"CPy_{x}DECREF({dest});")
# Otherwise assume it's an unboxed, pointerless value and do nothing.
def pretty_name(self, typ: RType) -> str:
value_type = optional_value_type(typ)
if value_type is not None:
return "%s or None" % self.pretty_name(value_type)
return str(typ)
def emit_cast(
self,
src: str,
dest: str,
typ: RType,
*,
declare_dest: bool = False,
error: ErrorHandler | None = None,
raise_exception: bool = True,
optional: bool = False,
src_type: RType | None = None,
likely: bool = True,
) -> None:
"""Emit code for casting a value of given type.
Somewhat strangely, this supports unboxed types but only
operates on boxed versions. This is necessary to properly
handle types such as Optional[int] in compatibility glue.
By default, assign NULL (error value) to dest if the value has
an incompatible type and raise TypeError. These can be customized
using 'error' and 'raise_exception'.
Always copy/steal the reference in 'src'.
Args:
src: Name of source C variable
dest: Name of target C variable
typ: Type of value
declare_dest: If True, also declare the variable 'dest'
error: What happens on error
raise_exception: If True, also raise TypeError on failure
likely: If the cast is likely to succeed (can be False for unions)
"""
error = error or AssignHandler()
# Special case casting *from* optional
if src_type and is_optional_type(src_type) and not is_object_rprimitive(typ):
value_type = optional_value_type(src_type)
assert value_type is not None
if is_same_type(value_type, typ):
if declare_dest:
self.emit_line(f"PyObject *{dest};")
check = "({} != Py_None)"
if likely:
check = f"(likely{check})"
self.emit_arg_check(src, dest, typ, check.format(src), optional)
self.emit_lines(f" {dest} = {src};", "else {")
self.emit_cast_error_handler(error, src, dest, typ, raise_exception)
self.emit_line("}")
return
# TODO: Verify refcount handling.
if (
is_list_rprimitive(typ)
or is_dict_rprimitive(typ)
or is_set_rprimitive(typ)
or is_str_rprimitive(typ)
or is_range_rprimitive(typ)
or is_float_rprimitive(typ)
or is_int_rprimitive(typ)
or is_bool_rprimitive(typ)
or is_bit_rprimitive(typ)
or is_fixed_width_rtype(typ)
):
if declare_dest:
self.emit_line(f"PyObject *{dest};")
if is_list_rprimitive(typ):
prefix = "PyList"
elif is_dict_rprimitive(typ):
prefix = "PyDict"
elif is_set_rprimitive(typ):
prefix = "PySet"
elif is_str_rprimitive(typ):
prefix = "PyUnicode"
elif is_range_rprimitive(typ):
prefix = "PyRange"
elif is_float_rprimitive(typ):
prefix = "CPyFloat"
elif is_int_rprimitive(typ) or is_fixed_width_rtype(typ):
# TODO: Range check for fixed-width types?
prefix = "PyLong"
elif is_bool_rprimitive(typ) or is_bit_rprimitive(typ):
prefix = "PyBool"
else:
assert False, f"unexpected primitive type: {typ}"
check = "({}_Check({}))"
if likely:
check = f"(likely{check})"
self.emit_arg_check(src, dest, typ, check.format(prefix, src), optional)
self.emit_lines(f" {dest} = {src};", "else {")
self.emit_cast_error_handler(error, src, dest, typ, raise_exception)
self.emit_line("}")
elif is_bytes_rprimitive(typ):
if declare_dest:
self.emit_line(f"PyObject *{dest};")
check = "(PyBytes_Check({}) || PyByteArray_Check({}))"
if likely:
check = f"(likely{check})"
self.emit_arg_check(src, dest, typ, check.format(src, src), optional)
self.emit_lines(f" {dest} = {src};", "else {")
self.emit_cast_error_handler(error, src, dest, typ, raise_exception)
self.emit_line("}")
elif is_tuple_rprimitive(typ):
if declare_dest:
self.emit_line(f"{self.ctype(typ)} {dest};")
check = "(PyTuple_Check({}))"
if likely:
check = f"(likely{check})"
self.emit_arg_check(src, dest, typ, check.format(src), optional)
self.emit_lines(f" {dest} = {src};", "else {")
self.emit_cast_error_handler(error, src, dest, typ, raise_exception)
self.emit_line("}")
elif isinstance(typ, RInstance):
if declare_dest:
self.emit_line(f"PyObject *{dest};")
concrete = all_concrete_classes(typ.class_ir)
# If there are too many concrete subclasses or we can't find any
# (meaning the code ought to be dead or we aren't doing global opts),
# fall back to a normal typecheck.
# Otherwise check all the subclasses.
if not concrete or len(concrete) > FAST_ISINSTANCE_MAX_SUBCLASSES + 1:
check = "(PyObject_TypeCheck({}, {}))".format(
src, self.type_struct_name(typ.class_ir)
)
else:
full_str = "(Py_TYPE({src}) == {targets[0]})"
for i in range(1, len(concrete)):
full_str += " || (Py_TYPE({src}) == {targets[%d]})" % i
if len(concrete) > 1:
full_str = "(%s)" % full_str
check = full_str.format(
src=src, targets=[self.type_struct_name(ir) for ir in concrete]
)
if likely:
check = f"(likely{check})"
self.emit_arg_check(src, dest, typ, check, optional)
self.emit_lines(f" {dest} = {src};".format(dest, src), "else {")
self.emit_cast_error_handler(error, src, dest, typ, raise_exception)
self.emit_line("}")
elif is_none_rprimitive(typ):
if declare_dest:
self.emit_line(f"PyObject *{dest};")
check = "({} == Py_None)"
if likely:
check = f"(likely{check})"
self.emit_arg_check(src, dest, typ, check.format(src), optional)
self.emit_lines(f" {dest} = {src};", "else {")
self.emit_cast_error_handler(error, src, dest, typ, raise_exception)
self.emit_line("}")
elif is_object_rprimitive(typ):
if declare_dest:
self.emit_line(f"PyObject *{dest};")
self.emit_arg_check(src, dest, typ, "", optional)
self.emit_line(f"{dest} = {src};")
if optional:
self.emit_line("}")
elif isinstance(typ, RUnion):
self.emit_union_cast(
src, dest, typ, declare_dest, error, optional, src_type, raise_exception
)
elif isinstance(typ, RTuple):
assert not optional
self.emit_tuple_cast(src, dest, typ, declare_dest, error, src_type)
else:
assert False, "Cast not implemented: %s" % typ
def emit_cast_error_handler(
self, error: ErrorHandler, src: str, dest: str, typ: RType, raise_exception: bool
) -> None:
if raise_exception:
if isinstance(error, TracebackAndGotoHandler):
# Merge raising and emitting traceback entry into a single call.
self.emit_type_error_traceback(
error.source_path, error.module_name, error.traceback_entry, typ=typ, src=src
)
self.emit_line("goto %s;" % error.label)
return
self.emit_line(f'CPy_TypeError("{self.pretty_name(typ)}", {src}); ')
if isinstance(error, AssignHandler):
self.emit_line("%s = NULL;" % dest)
elif isinstance(error, GotoHandler):
self.emit_line("goto %s;" % error.label)
elif isinstance(error, TracebackAndGotoHandler):
self.emit_line("%s = NULL;" % dest)
self.emit_traceback(error.source_path, error.module_name, error.traceback_entry)
self.emit_line("goto %s;" % error.label)
else:
assert isinstance(error, ReturnHandler)
self.emit_line("return %s;" % error.value)
def emit_union_cast(
self,
src: str,
dest: str,
typ: RUnion,
declare_dest: bool,
error: ErrorHandler,
optional: bool,
src_type: RType | None,
raise_exception: bool,
) -> None:
"""Emit cast to a union type.
The arguments are similar to emit_cast.
"""
if declare_dest:
self.emit_line(f"PyObject *{dest};")
good_label = self.new_label()
if optional:
self.emit_line(f"if ({src} == NULL) {{")
self.emit_line(f"{dest} = {self.c_error_value(typ)};")
self.emit_line(f"goto {good_label};")
self.emit_line("}")
for item in typ.items:
self.emit_cast(
src,
dest,
item,
declare_dest=False,
raise_exception=False,
optional=False,
likely=False,
)
self.emit_line(f"if ({dest} != NULL) goto {good_label};")
# Handle cast failure.
self.emit_cast_error_handler(error, src, dest, typ, raise_exception)
self.emit_label(good_label)
def emit_tuple_cast(
self,
src: str,
dest: str,
typ: RTuple,
declare_dest: bool,
error: ErrorHandler,
src_type: RType | None,
) -> None:
"""Emit cast to a tuple type.
The arguments are similar to emit_cast.
"""
if declare_dest:
self.emit_line(f"PyObject *{dest};")
# This reuse of the variable is super dodgy. We don't even
# care about the values except to check whether they are
# invalid.
out_label = self.new_label()
self.emit_lines(
"if (unlikely(!(PyTuple_Check({r}) && PyTuple_GET_SIZE({r}) == {size}))) {{".format(
r=src, size=len(typ.types)
),
f"{dest} = NULL;",
f"goto {out_label};",
"}",
)
for i, item in enumerate(typ.types):
# Since we did the checks above this should never fail
self.emit_cast(
f"PyTuple_GET_ITEM({src}, {i})",
dest,
item,
declare_dest=False,
raise_exception=False,
optional=False,
)
self.emit_line(f"if ({dest} == NULL) goto {out_label};")
self.emit_line(f"{dest} = {src};")
self.emit_label(out_label)
def emit_arg_check(self, src: str, dest: str, typ: RType, check: str, optional: bool) -> None:
if optional:
self.emit_line(f"if ({src} == NULL) {{")
self.emit_line(f"{dest} = {self.c_error_value(typ)};")
if check != "":
self.emit_line("{}if {}".format("} else " if optional else "", check))
elif optional:
self.emit_line("else {")
def emit_unbox(
self,
src: str,
dest: str,
typ: RType,
*,
declare_dest: bool = False,
error: ErrorHandler | None = None,
raise_exception: bool = True,
optional: bool = False,
borrow: bool = False,
) -> None:
"""Emit code for unboxing a value of given type (from PyObject *).
By default, assign error value to dest if the value has an
incompatible type and raise TypeError. These can be customized
using 'error' and 'raise_exception'.
Generate a new reference unless 'borrow' is True.
Args:
src: Name of source C variable
dest: Name of target C variable
typ: Type of value
declare_dest: If True, also declare the variable 'dest'
error: What happens on error
raise_exception: If True, also raise TypeError on failure
borrow: If True, create a borrowed reference
"""
error = error or AssignHandler()
# TODO: Verify refcount handling.
if isinstance(error, AssignHandler):
failure = f"{dest} = {self.c_error_value(typ)};"
elif isinstance(error, GotoHandler):
failure = "goto %s;" % error.label
else:
assert isinstance(error, ReturnHandler)
failure = "return %s;" % error.value
if raise_exception:
raise_exc = f'CPy_TypeError("{self.pretty_name(typ)}", {src}); '
failure = raise_exc + failure
if is_int_rprimitive(typ) or is_short_int_rprimitive(typ):
if declare_dest:
self.emit_line(f"CPyTagged {dest};")
self.emit_arg_check(src, dest, typ, f"(likely(PyLong_Check({src})))", optional)
if borrow:
self.emit_line(f" {dest} = CPyTagged_BorrowFromObject({src});")
else:
self.emit_line(f" {dest} = CPyTagged_FromObject({src});")
self.emit_line("else {")
self.emit_line(failure)
self.emit_line("}")
elif is_bool_rprimitive(typ) or is_bit_rprimitive(typ):
# Whether we are borrowing or not makes no difference.
if declare_dest:
self.emit_line(f"char {dest};")
self.emit_arg_check(src, dest, typ, f"(unlikely(!PyBool_Check({src}))) {{", optional)
self.emit_line(failure)
self.emit_line("} else")
conversion = f"{src} == Py_True"
self.emit_line(f" {dest} = {conversion};")
elif is_none_rprimitive(typ):
# Whether we are borrowing or not makes no difference.
if declare_dest:
self.emit_line(f"char {dest};")
self.emit_arg_check(src, dest, typ, f"(unlikely({src} != Py_None)) {{", optional)
self.emit_line(failure)
self.emit_line("} else")
self.emit_line(f" {dest} = 1;")
elif is_int64_rprimitive(typ):
# Whether we are borrowing or not makes no difference.
assert not optional # Not supported for overlapping error values
if declare_dest:
self.emit_line(f"int64_t {dest};")
self.emit_line(f"{dest} = CPyLong_AsInt64({src});")
if not isinstance(error, AssignHandler):
self.emit_unbox_failure_with_overlapping_error_value(dest, typ, failure)
elif is_int32_rprimitive(typ):
# Whether we are borrowing or not makes no difference.
assert not optional # Not supported for overlapping error values
if declare_dest:
self.emit_line(f"int32_t {dest};")
self.emit_line(f"{dest} = CPyLong_AsInt32({src});")
if not isinstance(error, AssignHandler):
self.emit_unbox_failure_with_overlapping_error_value(dest, typ, failure)
elif is_int16_rprimitive(typ):
# Whether we are borrowing or not makes no difference.
assert not optional # Not supported for overlapping error values
if declare_dest:
self.emit_line(f"int16_t {dest};")
self.emit_line(f"{dest} = CPyLong_AsInt16({src});")
if not isinstance(error, AssignHandler):
self.emit_unbox_failure_with_overlapping_error_value(dest, typ, failure)
elif is_uint8_rprimitive(typ):
# Whether we are borrowing or not makes no difference.
assert not optional # Not supported for overlapping error values
if declare_dest:
self.emit_line(f"uint8_t {dest};")
self.emit_line(f"{dest} = CPyLong_AsUInt8({src});")
if not isinstance(error, AssignHandler):
self.emit_unbox_failure_with_overlapping_error_value(dest, typ, failure)
elif is_float_rprimitive(typ):
assert not optional # Not supported for overlapping error values
if declare_dest:
self.emit_line(f"double {dest};")
# TODO: Don't use __float__ and __index__
self.emit_line(f"{dest} = PyFloat_AsDouble({src});")
self.emit_lines(f"if ({dest} == -1.0 && PyErr_Occurred()) {{", failure, "}")
elif isinstance(typ, RTuple):
self.declare_tuple_struct(typ)
if declare_dest:
self.emit_line(f"{self.ctype(typ)} {dest};")
# HACK: The error handling for unboxing tuples is busted
# and instead of fixing it I am just wrapping it in the
# cast code which I think is right. This is not good.
if optional:
self.emit_line(f"if ({src} == NULL) {{")
self.emit_line(f"{dest} = {self.c_error_value(typ)};")
self.emit_line("} else {")
cast_temp = self.temp_name()
self.emit_tuple_cast(
src, cast_temp, typ, declare_dest=True, error=error, src_type=None
)
self.emit_line(f"if (unlikely({cast_temp} == NULL)) {{")
# self.emit_arg_check(src, dest, typ,
# '(!PyTuple_Check({}) || PyTuple_Size({}) != {}) {{'.format(
# src, src, len(typ.types)), optional)
self.emit_line(failure) # TODO: Decrease refcount?
self.emit_line("} else {")
if not typ.types:
self.emit_line(f"{dest}.empty_struct_error_flag = 0;")
for i, item_type in enumerate(typ.types):
temp = self.temp_name()
# emit_tuple_cast above checks the size, so this should not fail
self.emit_line(f"PyObject *{temp} = PyTuple_GET_ITEM({src}, {i});")
temp2 = self.temp_name()
# Unbox or check the item.
if item_type.is_unboxed:
self.emit_unbox(
temp,
temp2,
item_type,
raise_exception=raise_exception,
error=error,
declare_dest=True,
borrow=borrow,
)
else:
if not borrow:
self.emit_inc_ref(temp, object_rprimitive)
self.emit_cast(temp, temp2, item_type, declare_dest=True)
self.emit_line(f"{dest}.f{i} = {temp2};")
self.emit_line("}")
if optional:
self.emit_line("}")
else:
assert False, "Unboxing not implemented: %s" % typ
def emit_box(
self, src: str, dest: str, typ: RType, declare_dest: bool = False, can_borrow: bool = False
) -> None:
"""Emit code for boxing a value of given type.
Generate a simple assignment if no boxing is needed.
The source reference count is stolen for the result (no need to decref afterwards).
"""
# TODO: Always generate a new reference (if a reference type)
if declare_dest:
declaration = "PyObject *"
else:
declaration = ""
if is_int_rprimitive(typ) or is_short_int_rprimitive(typ):
# Steal the existing reference if it exists.
self.emit_line(f"{declaration}{dest} = CPyTagged_StealAsObject({src});")
elif is_bool_rprimitive(typ) or is_bit_rprimitive(typ):
# N.B: bool is special cased to produce a borrowed value
# after boxing, so we don't need to increment the refcount
# when this comes directly from a Box op.
self.emit_lines(f"{declaration}{dest} = {src} ? Py_True : Py_False;")
if not can_borrow:
self.emit_inc_ref(dest, object_rprimitive)
elif is_none_rprimitive(typ):
# N.B: None is special cased to produce a borrowed value
# after boxing, so we don't need to increment the refcount
# when this comes directly from a Box op.
self.emit_lines(f"{declaration}{dest} = Py_None;")
if not can_borrow:
self.emit_inc_ref(dest, object_rprimitive)
elif is_int32_rprimitive(typ) or is_int16_rprimitive(typ) or is_uint8_rprimitive(typ):
self.emit_line(f"{declaration}{dest} = PyLong_FromLong({src});")
elif is_int64_rprimitive(typ):
self.emit_line(f"{declaration}{dest} = PyLong_FromLongLong({src});")
elif is_float_rprimitive(typ):
self.emit_line(f"{declaration}{dest} = PyFloat_FromDouble({src});")
elif isinstance(typ, RTuple):
self.declare_tuple_struct(typ)
self.emit_line(f"{declaration}{dest} = PyTuple_New({len(typ.types)});")
self.emit_line(f"if (unlikely({dest} == NULL))")
self.emit_line(" CPyError_OutOfMemory();")
# TODO: Fail if dest is None
for i in range(0, len(typ.types)):
if not typ.is_unboxed:
self.emit_line(f"PyTuple_SET_ITEM({dest}, {i}, {src}.f{i}")
else:
inner_name = self.temp_name()
self.emit_box(f"{src}.f{i}", inner_name, typ.types[i], declare_dest=True)
self.emit_line(f"PyTuple_SET_ITEM({dest}, {i}, {inner_name});")
else:
assert not typ.is_unboxed
# Type is boxed -- trivially just assign.
self.emit_line(f"{declaration}{dest} = {src};")
def emit_error_check(self, value: str, rtype: RType, failure: str) -> None:
"""Emit code for checking a native function return value for uncaught exception."""
if isinstance(rtype, RTuple):
if len(rtype.types) == 0:
return # empty tuples can't fail.
else:
cond = self.tuple_undefined_check_cond(rtype, value, self.c_error_value, "==")
self.emit_line(f"if ({cond}) {{")
elif rtype.error_overlap:
# The error value is also valid as a normal value, so we need to also check
# for a raised exception.
self.emit_line(f"if ({value} == {self.c_error_value(rtype)} && PyErr_Occurred()) {{")
else:
self.emit_line(f"if ({value} == {self.c_error_value(rtype)}) {{")
self.emit_lines(failure, "}")
def emit_gc_visit(self, target: str, rtype: RType) -> None:
"""Emit code for GC visiting a C variable reference.
Assume that 'target' represents a C expression that refers to a
struct member, such as 'self->x'.
"""
if not rtype.is_refcounted:
# Not refcounted -> no pointers -> no GC interaction.
return
elif isinstance(rtype, RPrimitive) and rtype.name == "builtins.int":
self.emit_line(f"if (CPyTagged_CheckLong({target})) {{")
self.emit_line(f"Py_VISIT(CPyTagged_LongAsObject({target}));")
self.emit_line("}")
elif isinstance(rtype, RTuple):
for i, item_type in enumerate(rtype.types):
self.emit_gc_visit(f"{target}.f{i}", item_type)
elif self.ctype(rtype) == "PyObject *":
# The simplest case.
self.emit_line(f"Py_VISIT({target});")
else:
assert False, "emit_gc_visit() not implemented for %s" % repr(rtype)
def emit_gc_clear(self, target: str, rtype: RType) -> None:
"""Emit code for clearing a C attribute reference for GC.
Assume that 'target' represents a C expression that refers to a
struct member, such as 'self->x'.
"""
if not rtype.is_refcounted:
# Not refcounted -> no pointers -> no GC interaction.
return
elif isinstance(rtype, RPrimitive) and rtype.name == "builtins.int":
self.emit_line(f"if (CPyTagged_CheckLong({target})) {{")
self.emit_line(f"CPyTagged __tmp = {target};")
self.emit_line(f"{target} = {self.c_undefined_value(rtype)};")
self.emit_line("Py_XDECREF(CPyTagged_LongAsObject(__tmp));")
self.emit_line("}")
elif isinstance(rtype, RTuple):
for i, item_type in enumerate(rtype.types):
self.emit_gc_clear(f"{target}.f{i}", item_type)
elif self.ctype(rtype) == "PyObject *" and self.c_undefined_value(rtype) == "NULL":
# The simplest case.
self.emit_line(f"Py_CLEAR({target});")
else:
assert False, "emit_gc_clear() not implemented for %s" % repr(rtype)
def emit_traceback(
self, source_path: str, module_name: str, traceback_entry: tuple[str, int]
) -> None:
return self._emit_traceback("CPy_AddTraceback", source_path, module_name, traceback_entry)
def emit_type_error_traceback(
self,
source_path: str,
module_name: str,
traceback_entry: tuple[str, int],
*,
typ: RType,
src: str,
) -> None:
func = "CPy_TypeErrorTraceback"
type_str = f'"{self.pretty_name(typ)}"'
return self._emit_traceback(
func, source_path, module_name, traceback_entry, type_str=type_str, src=src
)
def _emit_traceback(
self,
func: str,
source_path: str,
module_name: str,
traceback_entry: tuple[str, int],
type_str: str = "",
src: str = "",
) -> None:
globals_static = self.static_name("globals", module_name)
line = '%s("%s", "%s", %d, %s' % (
func,
source_path.replace("\\", "\\\\"),
traceback_entry[0],
traceback_entry[1],
globals_static,
)
if type_str:
assert src
line += f", {type_str}, {src}"
line += ");"
self.emit_line(line)
if DEBUG_ERRORS:
self.emit_line('assert(PyErr_Occurred() != NULL && "failure w/o err!");')
def emit_unbox_failure_with_overlapping_error_value(
self, dest: str, typ: RType, failure: str
) -> None:
self.emit_line(f"if ({dest} == {self.c_error_value(typ)} && PyErr_Occurred()) {{")
self.emit_line(failure)
self.emit_line("}")
def c_array_initializer(components: list[str], *, indented: bool = False) -> str:
"""Construct an initializer for a C array variable.
Components are C expressions valid in an initializer.
For example, if components are ["1", "2"], the result
would be "{1, 2}", which can be used like this:
int a[] = {1, 2};
If the result is long, split it into multiple lines.
"""
indent = " " * 4 if indented else ""
res = []
current: list[str] = []
cur_len = 0
for c in components:
if not current or cur_len + 2 + len(indent) + len(c) < 70:
current.append(c)
cur_len += len(c) + 2
else:
res.append(indent + ", ".join(current))
current = [c]
cur_len = len(c)
if not res:
# Result fits on a single line
return "{%s}" % ", ".join(current)
# Multi-line result
res.append(indent + ", ".join(current))
return "{\n " + ",\n ".join(res) + "\n" + indent + "}"